DOI QR코드

DOI QR Code

Current Status of Low-temperature TCO Electrode for Solar-cell Application: A Short Review

고효율 태양전지 적용을 위한 저온 투명전극 소재 연구현황 리뷰

  • Park, Hyeongsik (Convergence Research Center for Energy and Environmental Science, Sungkyunkwan University) ;
  • Kim, Youngkuk (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Oh, Donghyun (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Pham, Duy Phong (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Song, Jaechun (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • Received : 2021.01.05
  • Accepted : 2021.02.22
  • Published : 2021.03.25

Abstract

Transparent conducting oxide (TCO) films have been widely used in optoelectronic devices, such as OLEDs, TFTs, and solar cells. However, thin films of indium tin oxide (ITO) have few disadvantages pertaining to process parameters such as substrate temperature and sputtering power. In this study, we investigated the requirements for using TCO films in silicon-based solar cells and the best alternative TCO materials to improve their efficiency. Moreover, we discussed the current status of high-efficiency solar cells using low-temperature TCO films such as indium zinc oxide and Zr-doped indium oxide.

Keywords

References

  1. Goncalves, G., Grasso, V., Barquinha, P., Pereira, L., Elamurugu, E., Brignone, M., Martins, R., Lambertini, V., and Fortunato, E., 2011, "Role of room temperature sputtered high conductive and high transparent indium zinc oxide film contacts on the performance of orange, green, and blue organic light emitting diodes", Plasma Process Polym. 8(4), 340-345. https://doi.org/10.1002/ppap.201000149
  2. Addonizio, M.L., Gambale, E. and Antonaia, A., 2020, "Microstructure evolution of room-temperature-sputtered ITO films suitable for silicon heterojunction solar cells", Cur. Appl. Phys. 20 (8), 953-960. https://doi.org/10.1016/j.cap.2020.06.007
  3. Hosono, H., 2007, "Recent progress in transparent oxide semiconductors: Materials and device application", Thin Solid Films 515(15), 6000-6014. https://doi.org/10.1016/j.tsf.2006.12.125
  4. Sato, Y., Ashida, T., Oka, N., and Shigesato, Y., 2010, "Carrier density dependence of optical band gap and work function in Sn-doped In2O3 films", Appl. Phys. Express, 3(6), 061101. https://doi.org/10.1143/APEX.3.061101
  5. Gangwar, A.K., Godiwal, R., Jaiswal, J., Baloria, V., Pal, P., Gupta, G., and Singh, P., 2020, "Magnetron configurations dependent surface properties of SnO2 thin films deposited by sputtering process", Vacuum 177, 109353. https://doi.org/10.1016/j.vacuum.2020.109353
  6. Park, H.S., Hussain, S.Q., Velumani, S., Le, A.H.T., Ahn, S., Kim, S., and Yi, J., 2015, "Influence of working pressure on the structural, optical and electrical properties of sputter deposited AZO thin films", Mater. Sci. Semicon. Proc. 37, 29-36. https://doi.org/10.1016/j.mssp.2014.12.076
  7. Ko, Y., Kim, Y.R., Jang, H., Lee, C., Kang, M.G., and Jun, Y., 2017, "Electrodeposition of SnO2 on FTO and its application in planar heterojunction perovskite solar cells as an electron transport layer", Nanoscale Res. Lett., 12, 498. https://doi.org/10.1186/s11671-017-2247-x
  8. Malik, O., and Hidalga-Wade, F., 2017, "Sputtered indium tin oxide films for optoelectronic applications", Optoelectronics-Advanced Device Structures, https://www.intechopen.com/books/optoelectronics-advanced-device-structures/sputtered-indium-tin-oxide-films-for-optoelectronic-applications.
  9. Maki, K., Komiya, N., and Suzuki, A., 2015, "Fabrication of thin films of ITO films by aerosol CVD", Thin Solid Films, 445 (2), 224-228. https://doi.org/10.1016/j.tsf.2003.08.021
  10. Yamaguchi, M., Ide-Ektessabi, A., Nomura, H., and Yasui, N., 2004, "Characteristics of indium tin oxide thin films prepared using electron beam evaporation", Thin Solid Films 447-448, 115-118. https://doi.org/10.1016/j.tsf.2003.09.033
  11. Gao, Y., Zhao, G., Duan, Z., and Ren, Y., 2014, "Preparation of ITO films using a pyrolysis solution containing an acetylacetone chelating agent", Mater. Sci-Poland, 32, 66-70. https://doi.org/10.2478/s13536-013-0159-8
  12. He, L., and Tjong, S.C., 2016, "Nanostructured transparent conductive films: Fabrication, characterization and applications", Mater. Sci. Eng. R. Rep. 109, 1-101. https://doi.org/10.1016/j.mser.2016.08.002
  13. Park, H., Kim, D., Cho, E.-C., Hussain, S.Q., Park, J., Lim, D., Kim, S., Dutta, S., Kumar, M., Kim, Y., et al., 2020, "Effect on the reduction of the barrier height in rear-emitter silicon heterojunction solar cells using Ar plasma-treated ITO film", 20(1), 219-225. https://doi.org/10.1016/j.cap.2019.09.009
  14. Cao, W., Li, J., Chen, H., and Xue, J., 2014, "Transparent electrodes for orgainc optoelectronic devices: a review", SPIE J. Photon. Energy, 4(1), 040990. https://doi.org/10.1117/1.JPE.4.040990
  15. Le, A.H.T. Dao, V.A., Pham, D.P., Kim, S., Dutta, S., Nguyen, C.P.T., Lee, Y., Kim, Y., and Yi, J., 2019, "Damage to passivation contact in silicon heterojunction solar cells by ITO sputtering under various plasma exciton modes", Sol. Energy Mater. Sol. Cells, 192, 36-43. https://doi.org/10.1016/j.solmat.2018.12.001
  16. Calnan, S., and Tiwari, A.N., 2010, "High mobility transparent conducting oxides for thin film solar cells", 518(7), 1839-1849. https://doi.org/10.1016/j.tsf.2009.09.044
  17. Koida, T., Ueno, Y., and Shibata, H., 2018, "In2O3-based transparent conducting oxide films with high electron mobility fabricated at low process temperatures", Phys. Status Solidi A, 215(7), 1700506. https://doi.org/10.1002/pssa.201700506
  18. Han, C., Mazzarella, L., Zhao, Y., Yang, G., Procel, P., Tijssen, M., Montes, A., Spitaleri, L., Gulino, A., and Zhang, X., et al., 2019, "High-mobility hydrogenated fluorine-doped indium oxide film for passivating contacts c-Si Solar cells", ACS Appl. Mater. Interfaces 11(49), 45586-45595. https://doi.org/10.1021/acsami.9b14709
  19. Huang, W., Shi, J., Liu, Y., Meng, F., and Liu, Z., 2020, "Effect of crystalline structure on optical and electrical properties of IWOH films fabricated by low-damage reactive plasma deposition at room temperature", J. Alloys Compd. 843, 155151. https://doi.org/10.1016/j.jallcom.2020.155151
  20. Morales-Masis, M., Rucavado, E., Monnard, R., Barraud, L., Holovsky, J., Despeisse, M., Boccard, M., and Ballif, C., 2018, "Highly conductive and broadband transparent Zr-doped In2O3 as front electrode for solar cells", IEEE J. Photovolt. 8(5), 1202-1207. https://doi.org/10.1109/jphotov.2018.2851306
  21. Grew, B., Bowers, J.W., Lisco, F., Arnou, N., Walls, J.M., and Upadhyaya, H.M., 2014, "High mobility titanium-doped indium oxide for use in tandem solar cells deposited via pulsed DC magnetron sputtering", Energy Procedia 60, 148-155. https://doi.org/10.1016/j.egypro.2014.12.357
  22. Morales-Masis, M., Martin De Nicolas, S., Holovsky, J., De Wolf, S., and Ballif, C., 2015, "Low-temperature high mobility amorphous IZO for silicon heterojunction solar cells", IEEE J. Photovolt. 5(5), 1340-1347. https://doi.org/10.1109/JPHOTOV.2015.2450993
  23. Dey, K., 2018, "High mobility and highly transparent cerium doped indium oxide films deposited by magnetron sputtering for photovoltaic applications", Master thesis, National University of Singapore.
  24. Sahli, F., Werner, J., Kamino, B.A., Brauninger, M., Monnard, R., Paviet-Salomon, B., Barraud, L., Ding, L., Diaz Leon, J.J., Sacchetto, D., et al., 2018, "Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency", Nat. Mater. 17, 820-826. https://doi.org/10.1038/s41563-018-0115-4
  25. Aydin, E., De Bastiani, M., Yang, X., Sajjad, M., Aljamaan, F., Smirnov, Y., Hedhili, M.N., Liu, W., Allen, T.G., Xu, L., et al., 2019, "Zr-doped indium oxide (IZRO) transparent electrodes for perovskite-based tandem solar cells", Adv. Funct. Mater. 29(25), 1901741. https://doi.org/10.1002/adfm.201901741
  26. Jost, M., Kohnen, E., Morales-Vilches, A.B., Lipovsek, B., Jager, K., Macco, B., Al-Ashouri, A., Krc, J., Korte, L., Rech, B., et al., 2018, "Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield", Energy Environ. Sci. 11, 3511-3523. https://doi.org/10.1039/C8EE02469C
  27. Jost, M., Kegelmann, L., Korte, L. and Albrecht, S., 2020, "Monolithic perovskite tandem solar cells: A review of the present status and advanced characterization methods toward 30% efficiency", Adv. Energy Mater. 10, 1904102. https://doi.org/10.1002/aenm.201904102