DOI QR코드

DOI QR Code

1H Solid-state NMR Methodology Study for the Quantification of Water Content of Amorphous Silica Nanoparticles Depending on Relative Humidity

상대습도에 따른 비정질 규산염 나노입자의 함수량 정량 분석을 위한 1H 고상 핵자기 공명 분광분석 방법론 연구

  • Oh, Sol Bi (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Kim, Hyun Na (Department of Geoenvironmental Sciences, Kongju National University)
  • 오솔비 (공주대학교 지질환경과학과) ;
  • 김현나 (공주대학교 지질환경과학과)
  • Received : 2021.03.12
  • Accepted : 2021.03.23
  • Published : 2021.03.31

Abstract

The hydrogen in nominally anhydrous mineral is known to be associated with lattice defects, but it also can exist in the form of water and hydroxyl groups on the large surface of the nanoscale particles. In this study, we investigate the effectiveness of 1H solid-state nuclear magnetic resonance (NMR) spectroscopy as a robust experimental method to quantify the hydrogen atomic environments of amorphous silica nanoparticles with varying relative humidity. Amorphous silica nanoparticles were packed into NMR rotors in a temperature-humidity controlled glove box, then stored in different atmospheric conditions with 25% and 70% relative humidity for 2~10 days until 1H NMR experiments, and a slight difference was observed in 1H NMR spectra. These results indicate that amount of hydrous species in the sample packed in the NMR rotor is rarely changed by the external atmosphere. The amount of hydrogen atom, especially the amount of physisorbed water may vary in the range of ~10% due to the temporal and spatial inhomogeneity of relative humidity in the glove box. The quantitative analysis of 1H NMR spectra shows that the amount of hydrogen atom in amorphous silica nanoparticles linearly increases as the relative humidity increases. These results imply that the sample sealing capability of the NMR rotor is sufficient to preserve the hydrous environments of samples, and is suitable for the quantitative measurement of water content of ultrafine nominally anhydrous minerals depending on the atmospheric relative humidity. We expect that 1H solid-state NMR method is suitable to investigate systematically the effect of surface area and crystallinity on the water content of diverse nano-sized nominally anhydrous minerals with varying relative humidity.

명목상의 무수 광물의 수소 원자는 격자의 결함에 존재하는 것으로 알려져 있지만, 나노 스케일 입자의 경우 입자 표면에 물과 수산기의 형태로 존재할 수 있다. 본 연구에서는 비정질 규산염 나노입자의 수소 원자 환경에 대한 정량 측정 방법으로서, 1H 고상 핵자기 공명(solid-state nuclear magnetic resonance, NMR) 분광분석의 실효성을 알아보고자 하였다. 온도와 습도가 조절되는 글러브 박스 내에서 NMR 로터에 패킹된 비정질 규산염 나노입자를 25%와 70 % 상대습도에서 2일에서 10일까지 동안 보관한 후 1H NMR 스펙트럼을 측정한 결과, 약간의 차이는 있었으나 큰 변화가 관찰되지 않았다. 이는 NMR 로터에 패킹된 시료의 수소 원자 환경이 외부 대기에 의해 거의 변화하지 않았음을 의미한다. 수화 시간에 따른 비정질 규산염 나노입자의 함수량은 약 10 % 범위에서 차이를 보이며, 이는 글러브 박스의 시간적, 공간적 습도 불균일성에 의한 것으로 생각된다. 1H NMR 스펙트럼의 정량 분석 결과, 수화 상대습도가 증가함에 따라 비정질 규산염 나노입자의 수소 원자 수 역시 선형적으로 증가하였다. 이와 같은 결과는 NMR 로터의 시료 밀폐 능력이 수화 환경을 보존하며, 대기 상대습도 변화에 따른 나노입자의 함수량 변화 측정에 적합함을 의미한다. 본 연구의 결과를 통해, 1H 고상 핵자기 공명 분광분석을 이용하여 나노 스케일의 명목상의 무수 광물의 표면적, 결정도가 습도에 따른 광물의 함수량 변화에 미치는 영향에 대한 체계적인 연구를 할 수 있을 것으로 기대된다.

Keywords

References

  1. Behnsen, J. and Faulkner, D.R., 2012, The effect of mineralogy and effective normal stress on frictional strength of sheet silicates. Journal of Structural Geology, 42, 49-61. https://doi.org/10.1016/j.jsg.2012.06.015
  2. Bell, D.R. and Rossman, G.R., 1992, Water in Earth's mantle: the role of nominally anhydrous minerals. Science, 255, 1391-1397. https://doi.org/10.1126/science.255.5050.1391
  3. Davis, K.M. and Tomozawa, M., 1996, An infrared spectroscopic study of water-related species in silica glasses. Journal of Non-Crystalline Solids, 201, 177-198. https://doi.org/10.1016/0022-3093(95)00631-1
  4. DelaCaillerie, J.B.D., Aimeur, M.R., ElKortobi, Y. and Legrand, A.P., 1997, Water adsorption on pyrogenic silica followed by 1H MAS NMR. Journal of Colloid and Interface Science, 194, 434-439. https://doi.org/10.1006/jcis.1997.5126
  5. Hartmeyer, G., Marichal, C., Lebeau, B., Rigolet, S., Caullet, P. and Hernandez, J., 2007, Speciation of silanol groups in precipitated silica nanoparticles by 1H MAS NMR spectroscopy. The Journal of Physical Chemistry C, 111, 9066-9071. https://doi.org/10.1021/jp071490l
  6. Kim, H.N. and Lee, S.K., 2008, Effect of particle size on the atomic structure of amorphous silica nanoparticles: Solid-state NMR and quantum chemical calculations. Journal of the Mineralogical Society of Korea, 21, 321-329.
  7. Kim, H.N. and Lee, S.K., 2013, Atomic structure and dehydration mechanism of amorphous silica: Insights from 29Si and 1H solid-state MAS NMR study of SiO2 nanoparticles. Geochimica et Cosmochimica Acta, 120, 39-64. https://doi.org/10.1016/j.gca.2013.05.047
  8. Kohn, S.C., 1996, Solubility of H2O in nominally anhydrous mantle minerals using 1H MAS NMR. American Mineralogist, 81, 1523-1526. https://doi.org/10.2138/am-1996-11-1224
  9. Kohn, S.C., 2006, Structural studies of OH in nominally anhydrous minerals using NMR. Reviews in Mineralogy and Geochemistry, 62, 53-66. https://doi.org/10.2138/rmg.2006.62.3
  10. Liu, C.H.C. and Maciel, G.E., 1996a, Quantitative analysis of solids by high-resolution 1H NMR. Analytical Chemistry, 68, 1401-1407. https://doi.org/10.1021/ac9510696
  11. Liu, C.H.C. and Maciel, G.E., 1996b, The fumed silica surface: A study by NMR. Journal of the American Chemical Society, 118, 5103-5119. https://doi.org/10.1021/ja954120w
  12. Mizoguchi, K., Hirose, T., Shimamoto, T. and Fukuyama, E., 2006, Moisture-related weakening and strengthening of a fault activated at seismic slip rates. Geophysical Research Letters, 33, L16319. https://doi.org/10.1029/2006GL026980
  13. Moore, D.E., Lockner, D., Ma, S., Summers, R. and Byerlee, J., 1997, Strengths of serpentinite gouges at elevated temperatures. Journal of Geophysical Research: Solid Earth, 102, 14787-14801. https://doi.org/10.1029/97JB00995
  14. Moore, D.E. and Lockner, D.A., 2004, Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals. Journal of Geophysical Research: Solid Earth, 109, B03401. https://doi.org/10.1029/2003jb002582
  15. Morrow, C., Moore, D.E. and Lockner, D., 2000, The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophysical Research Letters, 27, 815-818. https://doi.org/10.1029/1999GL008401
  16. Rossman, G.R., 1996, Studies of OH in nominally anhydrous minerals. Physics and Chemistry of Minerals, 23, 299-304. https://doi.org/10.1007/BF00207777
  17. Schulz, S., Burford, R.O. and Mavko, B. 1983, Influence of seismicity and rainfall on episodic creep on the San Andreas fault system in central California. Journal of Geophysical Research: Solid Earth, 88, 7475-7484. https://doi.org/10.1029/JB088iB09p07475
  18. Van Diggelen, E.W., De Bresser, J.H., Peach, C.J. and Spiers, C.J., 2010, High shear strain behaviour of synthetic muscovite fault gouges under hydrothermal conditions. Journal of Structural Geology, 32, 1685-1700. https://doi.org/10.1016/j.jsg.2009.08.020
  19. Wang, H, Shibue, T. and Komine, H., 2020, Hydration and dehydration of water of bentonite: A solid-state 1H magic-angle spinning NMR study. Chemical Physics, 536, 110796. https://doi.org/10.1016/j.chemphys.2020.110796