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1. Introduction

Recently, AUV is frequently used to carry out a 

variety of missions including exploration for the 

ocean floors or military purposes. But there are many 

difficulties to control AUV partly due to complex 

nonlinear dynamics and partly due to the sever and

unpredictable environment in the ocean. 

Generally, the controlling scheme of an AUV are 

categorized into three categories such as heading 

control, dive plane control, and speed control. We 

only considered the dive plane dynamics for depth 

control in this thesis.

Many control techniques have been proposed for 

the depth control of AUV. Kadam et al.[3] linearized 

and approximated the overall depth control system of 

AUV as IPDT(Integral Plus Dead Time) system, and 
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tuned PD (Proportional-Derivative) controller with 

disturbance observer. But they did now show the 

disturbance rejection ability explicitly. Park et al.[4]  

suggested PD controller control the vehicle pitch in 

an inner loop controller, and P controller control the 

depth of AUV as a outer loop controller. Vahid et 

al.[6] proposed the same P+PD controller in order to 

promote the control ability of PD controller, but this 

method had the difficulty in tuning the controller and 

inability to disturbance rejection. Hong et al.[8] used 

P+SMC(Sliding Mode Control) as feedback controller 

and adaptive feedforward controller to compensate the 

pitch angle, but this overall control system was too 

complicate to realize. 

The FLC (Fuzzy Logic Control)[12] and Neuro-fuzzy 

controller[13] are adequate for the complex industrial 

process, but they may not give the excellent control 

performance if the controlled plant has uncertainty 

and high nonlinearity. Moreover, Traditional FLC 

showed the steady state error if the type of the 

controlled system is 0-type.

Ma et al.[2] proposed SMC (Sliding Mode Control) 

and Kadar et al.[9] suggested the DSMC (Discrete 

SMC) to control the depth of AUV. In spite of the 

SMC is robust in the sliding mode, the equivalent 

control input depends on the nominal parameters of 

AUV in the approaching mode. So the SMC may not 

guarantee the robust in case of severe parameter 

uncertainties. 

In this thesis, we proposed robust tracking control 

of the depth control for AUV to tackle the tracking 

the desired input and the rejecting disturbance 

simultaneously. The technique is developed based an 

error dynamic equation using state feedback, the 

closed-loop control system will have the desired poles 

using the pole placement theory. So the asymptotic 

stability of the overall system is guaranteed by 

Lyapunov function, and it have the ability of tracking 

the desired input, disturbance rejection and robustness 

property. The simulation results showed that the 

proposed controller have better control performances 

than the results of P+PD in presence of environmental 

disturbances and uncertainties.

2. Dynamic equations of AUV

The motion of an AUV can be derived by six 

degrees of freedom differential equations of motion[1,2]

using two coordinate frames shown in Fig. 1 and the 

parameters listed in Table 1.

The positions vector       and Euler angles 

vector       are defined in the earth-fixed 

coordinate frame, the velocity vector     

and the angular velocity vector       are 

defined in the body-fixed coordinate frame 

respectively.

The forces vector        and the moments 

vector        are defined in body-fixed 

frame.

Fig. 1 Reference Frame of AUV[2]

Table 1 Parameters of AUV[2]

DOF Motion
Force &
Moment

Velocity
Position &
Euler angle

1 surge   

2 sway   

3 heave   

4 roll   

5 pitch   

6 yaw   
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The linear velocity vector of AUV with respect to 

earth-fixed frame can be obtained by the time rate of 

the displacements as follows:

   















    













           (1)

where   is the transformation matrix between 

two coordinate frame.

 










   
  
  











  
  

  











  
  
  

  

    












   
         
    

  

                                             (2)

where   and  are abbreviation of sin  and cos

respectively.

Therefore, the velocity vectors with respect to 

body-fixed frame is as follows:

   














 
                       (3)

In the same way, the angular velocity vector with 

respect to body-fixed frame as follows:

      


























    
  
   















 (4)

The kinematic equation of motion in depth plane 

with respect to pitch   and heave   (assume 

    ) are given as (5) and (6) from (2) and 

(4).

    sin cos                       (5)

    cos                                  (6)

Assume the forward speed   of AUV to be 

constant at the steady state, then (7) can be linearized 

as (7) and (8), because of sin ≃  and cos ≃ .

                                   (7)

                                           (8)

Therefore, the simplified equation of motion in 

depth plane can be written by assuming the origin of 

the body-fixed frame is center of mass as follows:

  

         


             (9)

  
            

     


        (10) 

Together the equations (7)~(10) can be 

conveniently written in a matrix form as:

  











 

  


   

   
   


















      











     
   

   
   



































   (11)

The heave velocity during diving is less than 

0.05[m/s][14], thus terms containing   and   can be 

neglected. So the state-space model in depth plane of 

AUV can be expressed as:

  


























 



 




  
  


























 






   

                                            (12)

where   is pitch moment due to  , 
 is pitch 

moment due to  ,   is vehicle inertia around the 

pitch axes,   is the hydrostatic moment coefficient, 

  is the desired reference velocity, and   is fin 

lift coefficient.

According to the parameter in Table 2[6], the 

linearized equation of motion in depth plane is given 
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as (13). 

  


























  
  
  






























      (13)

Table 2 Parameter Values of AUV[6]

parameter parameter


  

 


      


 

 

3. Robust Tracking Controller

In this section, we present the design of robust 

tracking controller to have the ability to track the 

step input and to reject the step disturbance.

Consider a dynamic equation given by (14).

       ,              (14)

where   is the state vector,  is the input, and 

is the output.

Define the tracking error   for step input as 

follows:

   ≡                          (15)  

  Taking the time derivative of equation (15) yields  

                               (16)

We define the two intermediate variables as 

follows:

     and                  (17)

Then an augmented system is given as follows:

  



 









 


 

 


 









 





                   (18)

If the augmented system in equation (18) is 

completely controllable, we can find the closed loop 

system to be as equation (19) using the control 

feedback of the form as equation (20).

   ≡



 










 


 

 


 






             



 


 

         (19)

                             (20) 

where   is scalar,   is × vector.   is the 

order of the system matrix  .

The character equation associated with equation 

(18) is as follows:

  det                  (21)

If all the roots of the characteristic equation place 

in the left half-plane using pole-placement theory, 

then the closed-loop system is asymtotically stable for 

any initial conditions  .   is approaching to 0 

as  is approaching to infinity. 

As the augmented error equation have the tracking 

ability to step input, the steady-state error is zero.

Integrating the equation (17) into the equation (21), 

and the corresponding the block diagram of the 

closed-loop system including the controller is shown 

in Figure 2.

In Figure 2, the controller includes one integrator 

because of the Laplace transformation of step input, 

so this method is also called the internal model 

design technique.

    




              (22)

Fig. 2 Integral Controller for a step input[12]
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The design procedures of robust tracking controller 

for any other non-decaying input are the same as 

step input, the internal model of ramp input has two 

integrals.

4. Computer Simulation and Discussion 

In this thesis, we simulate the depth control for 

AUV under the various condition using robust 

tracking control technique.

We first consider the step response of AUV, when 

the magnitude of step input is . If we assign the 

desired poles of the closed-loop characteristic equation  

as ±  and , then    and 

    . The parameters of P+PD 

are    and      under the 

same desired poles. The simulation results using 

robust tracking controller and P+PD controller are 

shown in Fig. 3(a) and 3(b).

Fig. 3(a) The Step Response of AUV

Fig. 3(b) The Detail Step Response in Partial Time

Fig. 4 The Disturbance Response of AUV

In Fig. 3(b), the step response using robust 

tracking controller has maximum overshoot  at 

sec and the step response using P+PD 

controller has the maximum overshoot  at 

sec. The control performance such as rise time, 

settling time are almost same, but the response using 

P+PD controller is a little faster than the response 

using robust tracking controller.

In order to show the robustness for the step 

disturbance, we simulate the disturbance response 

when the magnitude of the disturbance is +2. The 

maximum value of disturbance response using robust 

tracking controller is about 0.12, and the disturbance 

is rejected at 3[sec] perfectly. Since the closed-loop 

transfer function from disturbance to output with 

P+PD controller is 0-type, so P+PD controller have 

no ability to handle the disturbance, in this case the 

final values of step disturbance is 5.

Now, we consider the robustness for the parameter 

uncertainty. The dynamic equation of the worst 

case[12] in case of 50% variations from the nominal 

values are as follows:

  


























  
  
  






























       (23)

Fig. 5 is the step response with or without the 

parameter uncertainties when the proposed controller 

is used. In case of parameter uncertainties, the 

maximum overshoot is  at sec and the 
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settling time is almost the same as without parameter 

uncertainty. This shows the proposed controller is 

robust in spite of severe parameter uncertainties.

Finally, we will show the simulation results when 

the disturbance and parameter uncertainties are exist 

simultaneously. Fig. 6 shows the disturbance response 

simulation results in the worst case. When the 

disturbance response simulation results when the 

parameter uncertainties. The maximum overshoot is 

 at sec, this value exceeds the sum of 

the disturbance response and the response when 

parameter uncertainties. And the output tracks the  

desired command signal precisely at sec

without steady-state error. This shows that the

Fig. 5 Tracking Response in case of Parameter 

Uncertainties

Fig. 6 The Disturbance Response with Parameter 

Uncertainty and Disturbance

proposed robust tracking controller is robust amidst 

severe ocean conditions.

5. Conclusion

In this paper, we proposed the depth control of 

AUV using robust tracking control technique. Since 

the behavior of AUV is effected by the poorly 

known disturbance forces and moments, the depth 

control law is equipped to track the command signal 

and to reject disturbance at a time. Since the 

proposed control system contains the internal model 

of the Laplace transformation of the command signal 

and the state feedback controller, the overall 

closed-loop control system is stable and robust amidst 

severe ocean environment.

The computer simulation results showed the 

excellent control performance to track the command 

signal and the robustness under the severe parameter 

uncertainties.
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