DOI QR코드

DOI QR Code

Data-Driven Modelling of Damage Prediction of Granite Using Acoustic Emission Parameters in Nuclear Waste Repository

  • Received : 2021.01.11
  • Accepted : 2021.02.18
  • Published : 2021.03.30

Abstract

Evaluating the quantitative damage to rocks through acoustic emission (AE) has become a research focus. Most studies mainly used one or two AE parameters to evaluate the degree of damage, but several AE parameters have been rarely used. In this study, several data-driven models were employed to reflect the combined features of AE parameters. Through uniaxial compression tests, we obtained mechanical and AE-signal data for five granite specimens. The maximum amplitude, hits, counts, rise time, absolute energy, and initiation frequency expressed as the cumulative value were selected as input parameters. The result showed that gradient boosting (GB) was the best model among the support vector regression methods. When GB was applied to the testing data, the root-mean-square error and R between the predicted and actual values were 0.96 and 0.077, respectively. A parameter analysis was performed to capture the parameter significance. The result showed that cumulative absolute energy was the main parameter for damage prediction. Thus, AE has practical applicability in predicting rock damage without conducting mechanical tests. Based on the results, this study will be useful for monitoring the near-field rock mass of nuclear waste repository.

Keywords

References

  1. J. Bergstra and Y. Bengio, "Random Search for Hyper-Parameter Optimization", J. Mach. Learn. Res, 13(1), 281-305 (2012).
  2. Z.T. Bieniawski, "Mechanism of Brittle Fracture of Rock: Part I-theory of the Fracture Process", Int. J. Rock Mech. Min. Sci., 4(4), 395-404 (1967). https://doi.org/10.1016/0148-9062(67)90030-7
  3. W.F. Brace and J.D. Byerlee, "Stick-Slip as a Mechanism for Earthquakes", Science, 153(3739), 990-992 (1966). https://doi.org/10.1126/science.153.3739.990
  4. L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen, Classification and Regression Trees, CRC Press, Florida (1984).
  5. C.C.J. Burges, "A Tutorial on Support Vector Machines for Pattern Recognition", Data Min. Knowl. Discov., 2(2), 121-167 (1998). https://doi.org/10.1023/A:1009715923555
  6. M. Cai, P. Kaiser, H. Morioka, M. Minami, T. Maejima, Y. Tasaka, and H. Kurose, "FLAC/PFC Coupled Numerical Simulation of AE in Large-Scale Underground Excavations", Int. J. Rock Mech. Min. Sci., 44(4), 550-564 (2007). https://doi.org/10.1016/j.ijrmms.2006.09.013
  7. M. Cai, H. Morioka, P. Kaiser, Y. Tasaka, H. Kurose, M. Minami, and T. Maejima, "Back-Analysis of Rock Mass Strength Parameters using AE Monitoring Data", Int. J. Rock Mech. Min. Sci., 44(4), 538-549 (2007). https://doi.org/10.1016/j.ijrmms.2006.09.012
  8. M.S. Diederichs, P.K. Kaiser, and E. Eberhardt, "Damage Initiation and Propagation in Hard Rock During Tunnelling and the Influence of Near-Face Stress Rotation", Int. J. Rock Mech. Min. Sci., 41(5), 785-812 (2004). https://doi.org/10.1016/j.ijrmms.2004.02.003
  9. E. Eberhardt, D. Stead, B. Stimpson, and R. Read, "Identifying Crack Initiation and Propagation Thresholds in Brittle Rock", Can. Geotech. J., 35(2), 222-233 (1998). https://doi.org/10.1139/t97-091
  10. J. H. Friedman, "Greedy Function Approximation: A Gradient Boosting Machine", Ann. Stat., 29(5), 1189-1232 (2001). https://doi.org/10.1214/aos/1013203451
  11. C.U. Grosse and M. Ohtsu, Acoustic Emission Testing, Springer Science & Business Media, Berlin (2008).
  12. A. Helmstetter and S. Garambois, "Seismic Monitoring of Sechilienne Rockslide (French Alps): Analysis of Seismic Signals and Their Correlation with Rainfalls", J. Geophys. Res., 115(F3) (2010).
  13. T. Ishida, J.F. Labuz, G. Manthei, P.G. Meredith, M. Nasseri, K. Shin, T. Yokoyama, and A. Zang, "ISRM Suggested Method for Laboratory Acoustic Emission Monitoring", Rock Mech Rock Eng, 50(3), 665-674 (2017). https://doi.org/10.1007/s00603-016-1165-z
  14. J.S. Kim, "Quantitative Damage Assessment of In-Situ Rock Mass Using Acoustic Emission Technique", Ph.D. Dissertation, Korea Advanced Institute of Science and Technology (2013).
  15. J.S. Kim, C.H. Hong, and G.Y. Kim, "Evaluation of Stress Thresholds in Crack Development and Corrected Fracture Toughness of KURT Granite Under Dry and Saturated Conditions", Tunn Undergr Space, 30(3), 256-269 (2020). https://doi.org/10.7474/TUS.2020.30.3.256
  16. J.S. Kim, K.S. Lee, W.J. Cho, H.J. Choi, and G.C. Cho, "A Comparative Evaluation of Stress-Strain and Acoustic Emission Methods for Quantitative Damage Assessments of Brittle Rock", Rock Mech Rock Eng, 48(2), 495-508 (2015). https://doi.org/10.1007/s00603-014-0590-0
  17. R. Koerner, W. McCabe, and A. Lord, "Acoustic Emission Behavior and Monitoring of Soils", in: Acoustic Emissions in Geotechnical Engineering Practice, V. Drnevich and R. Gray eds., ASTM International, 93-141, West Conshohocken (1981).
  18. E. N. Landis, and L. Baillon, "Experiments to Relate Acoustic Emission Energy to Fracture Energy of Concrete", J. Eng. Mech., 128(6), 698-702 (2002). https://doi.org/10.1061/(asce)0733-9399(2002)128:6(698)
  19. X. Liu, L. Wu, Y. Zhang, Z. Liang, X. Yao, and P. Liang, "Frequency Properties of Acoustic Emissions from The Dry and Saturated Rock", Environ. Earth Sci., 78(3), 67 (2019). https://doi.org/10.1007/s12665-019-8058-x
  20. C. Martin and N. Chandler, "The Progressive Fracture of Lac Du Bonnet Granite", Int. J. Rock Mech. Min. Sci. & Geomech. Abs., 31(6), 643-659 (1994). https://doi.org/10.1016/0148-9062(94)90005-1
  21. Z. Moradian, G. Ballivy, P. Rivard, C. Gravel, and B. Rousseau, "Evaluating Damage During Shear Tests of Rock Joints Using Acoustic Emissions", Int. J. Rock Mech. Min. Sci., 47(4), 590-598 (2010). https://doi.org/10.1016/j.ijrmms.2010.01.004
  22. A.C. Muller and S. Guido, "Introduction to Machine Learning with Python: A Guide for Data Scientists", 1st ed., O'Reilly Media, Inc., Massachusetts (2016).
  23. P. Rodriguez and T.B. Celestino, "Application of Acoustic Emission Monitoring and Signal Analysis to The Qualitative and Quantitative Characterization of the Fracturing Process in Rocks", Eng Fract Mech, 210, 54-69 (2019). https://doi.org/10.1016/j.engfracmech.2018.06.027
  24. V. Vapnik, S.E. Golowich, and A.J. Smola, "Support Vector Method for Function Approximation, Regression Estimation and Signal Processing", in: Adv Neural Inf Process Syst, M.C. Mozer and M. Jordan eds., 1st ed., 281-287, The MIT Press, London (1997).
  25. C. Wu, F. Gong, and Y. Luo, "A New Quantitative Method to Identify the Crack Damage Stress of Rock Using AE Detection Parameters", Bull. Eng. Geol. Environ., 80(1), 1-13 (2020).
  26. J.Z. Zhang, X.P. Zhou, L.S. Zhou, and F. Bertom, "Progressive Failure of Brittle Rocks with Non‐Isometric Flaws: Insights from Acousto‐Optic‐Mechanical (AOM) Data", Fract. Eng. Mater. Struct., 42(8), 1787-1802 (2019). https://doi.org/10.1111/ffe.13019
  27. X. Zhao, M. Cai, J. Wang, and L. Ma, "Damage Stress and Acoustic Emission Characteristics of the Beishan Granite", Int. J. Rock Mech. Min. Sci., 64, 258-269 (2013). https://doi.org/10.1016/j.ijrmms.2013.09.003
  28. H. Zhou, F. Meng, J. Lu, C. Zhang, and F. Yang, "Discussion on Methods for Calculating Crack Initiation Strength and Crack Damage Strength for Hard Rock", Rock and Soil Mechanics, 35(4), 913-918 (2014).
  29. X.P. Zhou, Y.X. Zhang, Q.L. Ha, and K.S. Zhu, "Micromechanical Modelling of the Complete Stress-Strain Relationship for Crack Weakened Rock Subjected to Compressive Loading", Rock Mech. Rock Engng., 41(5), 747-769 (2008). https://doi.org/10.1007/s00603-007-0130-2
  30. K. Zorlu, C. Gokceoglu, F. Ocakoglu, H.A. Nefeslioglu, and S. Acikalin, "Prediction of Uniaxial Compressive Strength of Sandstones using Petrography-Based Models", Eng. Geol., 96(3-4), 141-158 (2008). https://doi.org/10.1016/j.enggeo.2007.10.009