DOI QR코드

DOI QR Code

High-Efficency Grating Coupler with Distributed-Bragg Bottom Reflector Based on Hydrogenated Amorphous Silicon

수소화 비정질 실리콘 기반 분배 브래그 하부 반사기를 적용한 고효율 광 격자 커플러

  • Park, Ji-Hwan (Dept. C4ISR Systems Center, Defense Agency for Technology and Quality)
  • 박지환 (국방기술품질원 지휘정찰센터)
  • Received : 2021.01.29
  • Accepted : 2021.04.17
  • Published : 2021.04.30

Abstract

In this paper, hydrogenated amorphous silicon(a-Si:H) grating coupler with distributed Bragg reflector(DBR) is proposed to achieve high-efficiency nanophotonic radiator for Light Detection and Ranging(LiDAR) application. The DBR reduces downward leakage of the optical field below the grating region. As a result, the far-field intensity shows about 1.4 times stronger, compared to the common grating coupler without the DBR.

본 연구에서는 수소화 비정질 실리콘 (a-Si:H) 기반 분배 브래그 반사기 (Distributed Bragg Reflector, DBR)을 적용한 광 격자 커플러를 제안하여 라이다 시스템에서 고효율의 나노 광 방사기로 사용할 수 있다는 가능성을 보여주었다. 분배 브래그 반사기는 아랫방향으로 누설되는 광학 장을 감소시켜 커플링 효율을 높게 한다. 결과적으로 제안된 광 격자 커플러는 기존의 광 격자 커플러와 비교하여 약 1.4 배가 높은 far-field 세기를 가진다는 것을 보여주었다.

Keywords

References

  1. J. Shin, J. Sim, M. Jeong, and T. Ghoy, "Current Technological Trends in Optical Couplers," Electronics and Telecommunications Trends, vol. 8, no. 3, 1993, pp. 207-221. https://doi.org/10.22648/ETRI.1993.J.080316
  2. S. Min and K. Kim, "Fabrication and Characterization 1×7 Plastic Optical Fiber Coupler Using Tapered Acrylic Cylinder," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 1, 2014, pp. 11-16. https://doi.org/10.13067/JKIECS.2014.9.1.11
  3. K. Kim, S. Min, and J. Yun, "Low Loss Plastic Optical Fiber Coupler Incorporating a Polymer Tapering Waveguide Region," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 4, 2012, pp. 867-871. https://doi.org/10.13067/JKIECS.2012.7.4.867
  4. S. Kim and H. Lee, "Remote water level monitoring system based on reflected optical power detection with an optical coupler for spent fuel pool at nuclear power plant," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 3, 2019, pp. 505-512. https://doi.org/10.13067/JKIECS.2019.14.3.505
  5. J. Choi, G. Son and K. Yu, "A Study on the Radius of Curvature of Concave Optical Fiber Tips fabricated by Laser-Induced Photothermal Effect," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 5, 2019, pp. 871-876.
  6. H.-J. Heo and S.-I. Kim, "Analysis of Coupled Mode Theory for Design of Coupler Between Optical Fiber And Grating Assisted Waveguide," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 4, 2017, pp. 561-568. https://doi.org/10.13067/JKIECS.2017.12.4.561
  7. Y. Xu, F. Wang, Y. Gao, W. Chen, C. Chen, X. Wang, Y. Yi, X. Sun, and D. Zhang, "Efficient polymer waveguide grating coupler with directionality enhancement," Opt. Communications, vol. 463, May 2020, pp. 125418-0.
  8. H. Zhang, C. Li, X. Tu, J. Song, H. Zhou, X. Luo, Y. Huang, M. Yu, and G. Q. Lo, "Efficient silicon nitride grating coupler with distributed Bragg reflectors," Opt. Express, vol. 22, no. 18, 2014, pp. 21800-21805. https://doi.org/10.1364/OE.22.021800
  9. N. Yao, J. Zhou, R. Gao, J. Lin, M. Wang, Y. Cheng, W. Fang, and L. Tong, "Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber," Opt. Express, vol. 28, no. 8, 2020, pp. 12416-12423. https://doi.org/10.1364/oe.391228
  10. Z. Chen, R. Peng, Y. Wang, H. Zhu, and H. Hu, "Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector," Opt. Mater. Express, vol. 7, no. 11, 2017, pp. 4010-4017. https://doi.org/10.1364/OME.7.004010
  11. I. Krasnokutska, R. J. Chapman, J. L. J. Tambasco, and A. Peruzzo, "High coupling efficiency grating couplers on lithium niobate on insulator," Opt. Express, vol. 27, no. 13, 2019, pp. 17681-17685. https://doi.org/10.1364/OE.27.017681
  12. A. R. Forouhi and I. Bloomer, "Optical dispersion relations for amorphous semiconductors and amorphous dielectrics," Phys. Review, vol. 34, no. 10, 1986, pp. 7018-7026. https://doi.org/10.1103/PhysRevB.34.7018