References
- S. Chen, Q. Wang, M. Zhang, R. Huang, Y. Huang, J. Tang, and J. Liu, Scalable production of thick graphene film for next generation thermal management application, Carbon, 167, 270-277 (2020). https://doi.org/10.1016/j.carbon.2020.06.030
- P. Kumar, F. Shahzad, S. Yu, S. M. Hong, Y.-H. Kim, and C. M. Koo, Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness, Carbon, 94, 494-500 (2015). https://doi.org/10.1016/j.carbon.2015.07.032
- C. Chevigny, F. Dalmas, E. Di Cola, D. Gigmes, D. Bertin, F. Boue and J. Jestin, Polymer-grafted-nanoparticles nanocomposites: Dispersion, grafted chain conformation, and rheological behavior, Macromolecules, 44, 122-133 (2011). https://doi.org/10.1021/ma101332s
- Y. Guo, K. Ruan, X. Yang, T. Ma, J. Kong, N. Wu, J. Zhang, J. Gu, and Z. Guo, Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites, J. Mater. Chem. C, 7, 7035-7044 (2019). https://doi.org/10.1039/C9TC01804B
- Q. Jiang, X. Wang, Y. Zhu, D. Hui, and Y. Qiu, Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites, Compos. B Eng., 56, 408-412 (2014). https://doi.org/10.1016/j.compositesb.2013.08.064
- F. Zhang, Y. Feng, M. Qin, L. Gao, Z. Li, F. Zhao, Z. Zhang, F. Lv, and W. Feng, Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite, Adv. Funct. Mater., 29, 1901383 (2019). https://doi.org/10.1002/adfm.201901383
- H. Li, S. Dai, J. Miao, X. Wu, N. Chandrasekharan, H. Qiu, and J. Yang, Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel "molecular welding" strategy, Carbon, 126, 319-327 (2018). https://doi.org/10.1016/j.carbon.2017.10.044
- Y. Guo, G. Xu, X. Yang, K. Ruan, T. Ma, Q. Zhang, J. Gu, Y. Wu, H. Liu, and Z. Guo, Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology, J. Mater. Chem. C, 6, 3004-3015, (2018). https://doi.org/10.1039/C8TC00452H
- D. G. Papageorgiou, I. A. Kinloch, and R. Young, Mechanical properties of graphene and graphene-based nanocomposites, Prog. Mater. Sci., 90, 75-127 (2017). https://doi.org/10.1016/j.pmatsci.2017.07.004
- I. A. Ovid'Ko, Mechanical properties of graphene, Rev. Adv. Mater. Sci., 34, 1-11 (2013).
- A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys, 81, 109 (2009). https://doi.org/10.1103/RevModPhys.81.109
- A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569-581 (2011). https://doi.org/10.1038/nmat3064
- K. M. Shahil, and A. A. Balandin, Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials, Solid State Commun., 152, 1331-1340 (2012). https://doi.org/10.1016/j.ssc.2012.04.034
- J. Chen, B. Yao, C. Li, and G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, 64, 225-229 (2013). https://doi.org/10.1016/j.carbon.2013.07.055
- S. N. Alam, N. Sharma, and L. Kumar, Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO), Graphene, 6, 1-18 (2017). https://doi.org/10.4236/graphene.2017.61001
- I. H. Tseng, J. C. Chang, S. L. Huang, and M. H. Tsai, Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide, Polym. Int., 62, 827-835 (2013). https://doi.org/10.1002/pi.4375
- S. Wei, Q. Yu, Z. Fan, S. Liu, Z. Chi, X. Chen, Y. Zhang, and J. Xu, Fabricating high thermal conductivity rGO/polyimide nanocomposite films via a freeze-drying approach, RSC Adv., 8, 22169-22176 (2018). https://doi.org/10.1039/C8RA00827B
- C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov, and L.-J. Li, High-quality thin graphene films from fast electrochemical exfoliation, ACS Nano, 5, 2332-2339 (2011). https://doi.org/10.1021/nn200025p
- Y. J. Kwon, Y. Kwon, H. S. Park, and J. U. Lee, Mass-produced electrochemically exfoliated graphene for ultrahigh thermally conductive paper using a multimetal electrode system, Adv. Mater. Int., 6, 1900095 (2019). https://doi.org/10.1002/admi.201900095
- S. Lim, J. H. Han, H. W. Kang, J. U. Lee, and W. Lee, Preparation of electrochemically exfoliated graphene sheets using DC switching voltages, Carbon Lett., 30, 409-416 (2020). https://doi.org/10.1007/s42823-019-00110-3
- D. Van Thanh, L.-J. Li, C.-W. Chu, P.-J. Yen, and K.-H. Wei, Plasma-assisted electrochemical exfoliation of graphite for rapid production of graphene sheets, RSC Adv., 4, 6946-6949 (2014). https://doi.org/10.1039/c3ra46807k
- A. S. Kotkin, V. K. Kochergin, E. N. Kabachkov, Y. M. Shulga, A. S. Lobach, R. A. Manzhos, and A. G. Krivenko, One-step plasma electrochemical synthesis and oxygen electrocatalysis of nanocomposite of few-layer graphene structures with cobalt oxides, Mater. Today Energy, 17, 100459 (2020). https://doi.org/10.1016/j.mtener.2020.100459
- D. Van Thanh, H.-C. Chen, L.-J. Li, C.-W. Chu, and K.-H. Wei, Plasma electrolysis allows the facile and efficient production of graphite oxide from recycled graphite, RSC Adv., 3, 17402-17410 (2013). https://doi.org/10.1039/c3ra43084g
- F. Tuinstra and J. L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53, 1126-1130 (1970). https://doi.org/10.1063/1.1674108
- S. Reich and C. Thomsen, Raman spectroscopy of graphite, Philos. Trans. R. Soc. A, 362, 2271-2288 (2004). https://doi.org/10.1098/rsta.2004.1454
- V. Sreeja, G. Vinitha, R. Reshmi, E. Anila, and M. K. Jayaraj, Effect of reduction time on third order optical nonlinearity of reduced graphene oxide, Opt. Mater., 66, 460-468 (2017). https://doi.org/10.1016/j.optmat.2017.01.042
- C. Vacacela Gomez, T. Tene, M. Guevara, G. Tubon Usca, D. Colcha, H. Brito, R. Molina, S. Bellucci, and A. Tavolaro, Preparation of few-layer graphene dispersions from hydrothermally expanded graphite, Appl. Sci., 9, 2539 (2019). https://doi.org/10.3390/app9122539
- A. C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, and S. J. P. r. l. Roth, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
- Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, and J. T. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy, Small, 6, 195-200 (2010). https://doi.org/10.1002/smll.200901173
- V. Koissin, T. Bor, Z. Kotanjac, L. Lefferts, L. Warnet, and R. Akkerman, Carbon nanofibers grown on large woven cloths: Morphology and properties of growth, C Journal of Carbon Research, 2, 19 (2016). https://doi.org/10.3390/c2030019
- N. Diaz Silva, B. Valdez Salas, N. Nedev, M. Curiel Alvarez, J. M. Bastidas Rull, R. Zlatev, and M. Stoytcheva, Synthesis of carbon nanofibers with maghemite via a modified sol-gel technique, J. Nanomater., 2017, 10 (2017).
- S. Pei and H. M. Cheng, The reduction of graphene oxide, Carbon, 50, 3210-3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
- S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
- Y. C. G. Kwan, G. M. Ng, and C. H. A. Huan, Identification of functional groups and determination of carboxyl formation temperature in graphene oxide using the XPS O 1s spectrum, Thin Solid Films, 590, 40-48 (2015). https://doi.org/10.1016/j.tsf.2015.07.051
- N. Diez, A. Sliwak, S. Gryglewicz, B. Grzyb, and G. Gryglewicz, Enhanced reduction of graphene oxide by high-pressure hydrothermal treatment, RSC Adv., 5, 81831-81837 (2015). https://doi.org/10.1039/C5RA14461B
- C. Manoratne, S. Rosa, and I. R. M. Kottegoda, XRD-HTA, UV visible, FTIR and SEM interpretation of reduced graphene oxide synthesized from high purity vein graphite, Mat. Sci. Res. India, 14, 19-30 (2017). https://doi.org/10.13005/msri/140104
- J. Loos, A. Alexeev, N. Grossiord, C. E. Koning, and O. Regev, Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging, Ultramicroscopy, 104, 160-167 (2005). https://doi.org/10.1016/j.ultramic.2005.03.007