References
- Y. D. Park, Production technology of artificial graphite electrodes for are furnace, Polym. Sci. Technol., 8, 155-162 (1997).
- J. M. Ripalda, E. Román, N. Diaz, L. Galan, I. Montero, G. Comelli, A. Baraldi, S. Lizzit, A. Goldoni, and G. Paolucci, Correlation of x-ray absorption and x-ray photoemission spectroscopies in amorphous carbon nitride, Phys. Rev. B., 60, R3705-3708 (1999). https://doi.org/10.1103/PhysRevB.60.R3705
- S. S. Kim, Recent developments in anode materials for Li secondary batteries, J. Korean Electrochem. Soc., 11, 211-222 (2008). https://doi.org/10.5229/JKES.2008.11.3.211
- Y. Yamashita, K. Ouchi, A study on carbonization of phenol-formaldehyde resin labelled with deuterium and 13C, Carbon, 19, 89-94 (1981). https://doi.org/10.1016/0008-6223(81)90112-3
- X. Bourrat, E. J. Roche, and J. G. Lavin, Structure of mesophase pitch fibers, Carbon, 28, 435-446 (1990). https://doi.org/10.1016/0008-6223(90)90017-S
- I. Mochida, H. Toshima, Y. Korai, and T. Hino, Oxygen distribution in the mesophase pitch fibre after oxidative stabilization, J. Mater. Sci., 24, 389-394 (1989). https://doi.org/10.1007/BF01107416
- S. Otani, On the carbon fiber from the molten pyrolysis products, Carbon, 3, 31-34 (1965). https://doi.org/10.1016/0008-6223(65)90024-2
- K. J. Huttinger and J. P. Wang, Kinetics of mesophase formation in a stirred tank reactor and properties of the products - II. Discontinuous reactor, Carbon, 30, 1-8 (1992). https://doi.org/10.1016/0008-6223(92)90099-I
- K. Azami, S. Yamamoto, and Y. Sanada, Kinetics of mesophase formation of petroleum pitch, Carbon, 32, 947-951 (1994). https://doi.org/10.1016/0008-6223(94)90054-X
- J. H. Chae, K. J. Kim, K. Y. Cho, and J. Y. Choi, The carbonization behaviors of coal tar pitch for mechanical seal, Carbon Lett., 2, 182-191 (2001).
- J. S. Roh, A structural study of the oxidized high modulus pitch based carbon fibers by oxidation in carbon dioxide, Carbon Lett., 5, 27-33 (2004).
- D. S. Kang, S. M. Lee, S. H. Lee, and J. S. Roh, X-ray diffraction analysis of the crystallinity of phenolic resin-derived carbon as a function of the heating rate during the carbonization process, Carbon Lett., 27, 108-111 (2018). https://doi.org/10.5714/CL.2018.27.108
- S. H. Lee, D. S. Kang, S. M. Lee, and J. S. Roh, X-ray diffraction analysis of the effect of ball milling time on crystallinity of milled polyacrylonitrile-based carbon fiber, Carbon Lett., 26, 11-17 (2018). https://doi.org/10.5714/CL.2018.26.011
- W. O. Souza, K. Garcia, C. F. de Avila Dollinger, and L. C. Pardini, Electrical behavior of carbon fiber/phenolic composite during pyrolysis, Mater. Res., 18, 1209-1216 (2015). https://doi.org/10.1590/1516-1439.000515
- A. Dang, H. Li, T. Li, T. Zhao, C. Xiong, Q. Zhuang, Y. Shang, X. Chen, and X. Ji, Preparation and pyrolysis behavior of modified coal tar pitch as C/C composites matrix precursor, J. Anal. Appl. Pyrolysis, 119, 18-23 (2016). https://doi.org/10.1016/j.jaap.2016.04.002
- J. Y. Yang, S. H. Park, S. J. Park, and M. K. Seo, Preparation and characteristic of carbon/carbon composites with coal-tar and petroleum binder pitches, Appl. Chem. Eng., 26, 406-412 (2015). https://doi.org/10.14478/ace.2015.1035
- A. Oberlin, Carbonization and graphitization, Carbon, 22, 521-541 (1984). https://doi.org/10.1016/0008-6223(84)90086-1