References
- T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, Stretchable active-matrix organic light-emitting diode display using printable elastic conductors, Nat. Mater., 8, 494-499 (2009). https://doi.org/10.1038/nmat2459
- D. Yin, J. Feng, R. Ma, Y. Liu, Y. Zhang, X. Zhang, Y. Bi, Q. Chen, and H. Sun, Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process, Nat. Commun., 7, 1-7 (2016).
- H. Shin, S. Kim, J. Lee, H. Lee, H. Jung, and J. Park, Research trends in organic light emitting diode, Appl. Chem. Eng., 26, 381-388 (2015). https://doi.org/10.14478/ace.2015.1077
- P. Kathirgamanathan, L. M. Bushby, M. Kumaraverl, S. Ravichandran, and S. Surendrakumar, Electroluminescent organic and quantum dot LEDs: The state of the art, J. Disp. Tech., 11, 480-493 (2015). https://doi.org/10.1109/JDT.2015.2418279
- H. Zhang, Q. Su, and S. Chen, Recent progress in the device architecture of white quantum-dot light-emitting diodes, J. Inf. Disp., 20, 169-180 (2019). https://doi.org/10.1080/15980316.2019.1650129
- J. Yoo, W. Kim, S. Park, and J. Kim, Study on sonochemical synthesis and characterization of CdTe quantum dot, Appl. Chem. Eng., 28, 571-575 (2017). https://doi.org/10.14478/ace.2017.1078
- J. Lim, M. Park, W.Bae, D. Lee, S. Lee, C. Lee, K. Char Lim, Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots, ACS Nano, 7, 9019-9026 (2013). https://doi.org/10.1021/nn403594j
- K. Kim, H. Jung, W. Bae and C. Lee, Effect of solvents and pressure on the performance of quantum dot light emitting diodes fabricated with soft-contact transfer printing, Soc. Inf. Disp. Dig., 49, 1643-1646 (2018).
- H. Kim, M. Shin, and Y. Kim, Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter, Jpn. J. Appl. Phys., 55, 08RF01 (2016) https://doi.org/10.7567/JJAP.55.08RF01
- J. Manders, L. Qian, A. Titov, J. Hyvonen, J. Tokarz-Scott, K. P. Acharya, Y. Yang, W. Cao, Y. Zheng, J. Xue, and P. H. Holloway, High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays, J. Soc. Inf. Disp., 23/11, 523-528 (2015)
- P. Kathirgamanathan, M. Kumaraverl, N. Bramananthan, and S. Ravichandran, High efficiency and highly saturated red emitting inverted quantum dot devices (QLEDs): Optimisation of their efficiencies with low temperature annealed sol-gel derived ZnO as the electron transporter and a novel high mobility hole transporter and thermal annealing of the devices, J. Mater. Chem. C, 6, 11622-11644 (2018). https://doi.org/10.1039/C8TC03676D
- M. Mesta1, M. Carvelli, R. J. de Vries, H. van Eersel, J. J. M. van der Holst, M. Schober, M. Furno, B. Lussem, K. Leo, P. Loebl, R. Coehoorn and P. A. Bobbert, Molecular-scale simulation of electroluminescence in a multilayer white organic light-emitting diode, Nat. Mater., 12, 652-658 (2013). https://doi.org/10.1038/nmat3622
- SETFOS, accessed Nov 15, 2020, https://www.fluxim.com/setfos-intro.
- J. J. M. van der Holst, F. W. A. van Oost, R. Coehoorn, and P. A. Bobbert, Monte carlo study of charge transport in organic sandwich-type single-carrier devices: Effects of coulomb interactions, Phys. Rev. B, 83, 085206-1-085206-13 (2011). https://doi.org/10.1103/physrevb.83.085206
- M. Choi, J. Yang, T. Hyeon and D. Kim, Flexible quantum dot light-emitting diodes for next-generation displays, npj Flex. Electron., 10, 1-14 (2018).
- Rec. 2020, last modified Nov 12, 2020, accessed Nov 30, https://ko.wikipedia.org/wiki/Rec._2020.
- S. Choi, S. Kim, J. Oh, and C. Yoon, Display high color gamut fluorescent materials technology, Ceramist, 21, 55-63 (2018). https://doi.org/10.31613/ceramist.2018.21.1.05