DOI QR코드

DOI QR Code

홀로그램 압축을 위한 적응적 웨이블릿 변환

Adaptive Wavelet Transform for Hologram Compression

  • 투고 : 2021.01.12
  • 심사 : 2021.03.18
  • 발행 : 2021.03.30

초록

본 논문에서는 JPEG Pleno에서 제공하는 디지털 홀로그램 표준화 데이터를 압축하는 방법을 제시한다. 디지털 홀로그램의 수치 복원에서 시각화를 위한 랜덤 위상의 추가는 간섭현상으로 인한 스페클 노이즈와 더블어 홀로그램의 압축 효율을 떨어트린다. 홀로그램은 완전 복소의 부동소수점 형태의 데이터로 구성되며 초고해상도와 스페클 노이즈로 인해 홀로그램 특성에 맞춘 압축기술 개발이 필수적이다. 먼저, 다양한 웨이블릿 필터를 이용하여 홀로그램 데이터에 대한 주파수 특성 분석을 진행하여 필터 종류에 따른 에너지 집중도를 분석한다. 두 번째로 에너지 집중도를 이용한 부대역 선택 알고리즘에 대해 소개한다. 마지막으로 JPEG2000의 웨이블릿 필터인 Daubechies 9/7을 이용한 JPEG2000, SPIHT, H.264 결과와 제안하는 방법을 이용하여 압축 및 복원하고 압축률 대비 정량적 화질평가를 통해 그 효율을 분석한다.

In this paper, we propose a method of compressing digital hologram standardized data provided by JPEG Pleno. In numerical reconstruction of digital holograms, the addition of random phases for visualization reduces speckle noise due to interference and doubles the compression efficiency of holograms. Holograms are composed of completely complex floating point data, and due to ultra-high resolution and speckle noise, it is essential to develop a compression technology tailored to the characteristics of the hologram. First, frequency characteristics of hologram data are analyzed using various wavelet filters to analyze energy concentration according to filter types. Second, we introduce the subband selection algorithm using energy concentration. Finally, the JPEG2000, SPIHT, H.264 results using the Daubechies 9/7 wavelet filter of JPEG2000 and the proposed method are used to compress and restore, and the efficiency is analyzed through quantitative quality evaluation compared to the compression rate.

키워드

참고문헌

  1. Dennis Gabor, "'A new microscopic principle", Nature, 161, pp. 777-778, 1948. https://doi.org/10.1038/161777a0
  2. P. Hariharan, Basics of Holography, Cambridge University Press, May 2002.
  3. K. Matsushima and S. Nakahara, "Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method," Appl. Opt. 48, H54-H63, 2009. https://doi.org/10.1364/ao.48.000h54
  4. H. Yoshikawa, "Digital holographic signal processing," Proc. TAO First International Symposium on Three Dimensional Image Communication Technologies, pp. S-4-2, Dec. 1993.
  5. JPEG Pleno https://jpeg.org/jpegpleno/
  6. E. Darakis, T. J. Naughton, and J. J. Soraghan, "Compression defects in different reconstructions from phase-shifting digital holographic data," Appl. Opt, vol. 46, no. 21, pp. 4579-4586, Mar. 2007. https://doi.org/10.1364/AO.46.004579
  7. P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, "New high compression method for digital hologram recorded in microscope configuration." In Modeling Aspects in Optical Metrology III. International Society for Optics and Photonics. vol. 8083, no. 80830W, pp. 1-7, May.2011
  8. J. Y. Sim, and C. S. Kim, "Reconstruction depth adaptive coding of digital holograms." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. 95, no. 2, pp. 617-620, Feb.2012 https://doi.org/10.1587/transfun.E95.A.617
  9. T. J. Naughton, Y. Frauel, O. Matoba, N. Bertaux, E. Tajahuerce and B. Javidi, "Three-dimensional imaging, compression, and reconstruction of digital holograms", SPIE Proc, vol. 4877, Opp.104-114, Mar. 2003.
  10. P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, "New high compression method for digital hologram recorded in microscope configuration." In Modeling Aspects in Optical Metrology III. International Society for Optics and Photonics. vol. 8083, no. 80830W, pp. 1-7, May.2011
  11. Y. Rivenson, A. Stern, and B. Javidi, "Overview of compressive sensing techniques applied in holography." Applied optics, vol. 52, no. 1, pp. A423-A432, Jan.2013 https://doi.org/10.1364/ao.52.00a423
  12. H. Zhang, W. Zhou, D. Leber, Z. Hu, X. Yang, P. W. Tsang, and T. C. Poon, " Development of lossy and near-lossless compression methods for wafer surface structure digital holograms." Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 14, no. 4,pp. 1-8, Dec.2015 https://doi.org/10.1117/1.JMM.14.2.023503
  13. P. A. Cheremkhin, and E. A. Kurbatova, "Numerical comparison of scalar and vector methods of digital hologram compression." Holography, Diffractive Optics, and Applications VII. vol. 10022, no. 1002227, pp.1-10, Oct.2016
  14. E. Darakis and J. J. Soraghan, "Compression of interference patterns with application to phase-shifting digital holography", Appl. Opt, vol. 45, no 11, pp. 2437-2443, April, 2006. https://doi.org/10.1364/AO.45.002437
  15. P. A. Cheremkhin, and E. A. Kurbatova, "Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets." Applied optics, vol.57, no. 1, pp. A55-A64, Jan.2018 https://doi.org/10.1364/AO.57.000A55
  16. H. Yoshikawa and J. Tamai "Holographic image compression by motion picture coding", SPIE Proc, vol. 2652, Practical Holography X, pp. 2-9, March. 1996.
  17. Y. H. Seo, H. J. Choi and D. W. Kim, "3D scanning-based compression technique for digital hologram video", Signal Processing: Image Communication, vol. 22, no. 2, pp. 144-156, Nov. 2006.
  18. Y. H. Seo, H. J. Choi, J. W. Bae, H. J. Kang, S. H. Lee, J. S. Yoo and D. W. Kim, "A new coding technique for digital holographic video using multi-view prediction" IEICE TRANSACTIONS on Information and Systems, vol. E90-D, no.1, pp. 118-125, Jan. 2007. https://doi.org/10.1093/ietisy/e90-1.1.118
  19. E. Darakis and T. J. Naughton, "Compression of digital hologram sequences using MPEG-4", SPIE Proc, vol. 7358, pp. 735811-1, May 2009.
  20. K. Jaferzadeh, S. Gholami, and I. Moon, "Lossless and lossy compression of quantitative phase images of red blood cells obtained by digital holographic imaging." Applied optics, vol. 55, no. 36, pp. 10409-10416, Dec.2016 https://doi.org/10.1364/AO.55.010409
  21. A. Ahar, D. Blinder, R. Bruylants, C. Schretter, A. Munteanu, and P. Schelkens, "Subjective quality assessment of numerically reconstructed compressed holograms." In Applications of Digital Image Processing XXXVIII. International Society for Optics and Photonics. vol. 9599, no. 95990K, pp. 1-15, Sep.2015
  22. J. P. Peixeiro, C. Brites, J. Ascenso, and F. Pereira, "Holographic data coding: Benchmarking and extending hevc with adapted transforms." IEEE Transactions on Multimedia, vol. 20, no. 2, pp. 282-297, Feb.2018 https://doi.org/10.1109/tmm.2017.2742701
  23. S. Nimalraj "SPIHT: A Set Partitioning in Hierarchical Trees Algorithm for Image Compression", Contemporary Engineering Sciences, Vol. 8, 2015, no. 6, 263-270 https://doi.org/10.12988/ces.2015.519
  24. A. Skodras, C. Christopoulos, T. Ebrahimi "The JPEG 2000 still image compression standard", IEEE, Vol. 18, pp. 36-58, September, 2011
  25. A. Gilles, P. Gioia, R. Cozot, and L. Morin, "Hybrid approach for fast occlusion processing in computer-generated hologram calculation," Appl. Opt. AO, vol. 55, no. 20, pp. 5459-5470, Jul. 2016. https://doi.org/10.1364/AO.55.005459
  26. A. Gilles, P. Gioia, R. Cozot, and L. Morin, "Computer generated hologram from Multiview-plus-Depth data considering specular reflections," in 2016 IEEE International Conference on Multimedia Expo Workshops (ICMEW), 2016, pp. 1-6.