
JKSCI
한국컴퓨터정보학회논문지

Journal of The Korea Society of Computer and Information

Vol. 26 No. 4, pp. 63-74, April 2021

https://doi.org/10.9708/jksci.2021.26.04.063

A Batch Processing Algorithm for Moving k-Nearest Neighbor

Queries in Dynamic Spatial Networks

1)Hyung-Ju Cho*

*Professor, Dept. of Software, Kyungpook National University, Sangju, Korea

[Abstract]

Location-based services (LBSs) are expected to process a large number of spatial queries, such as

shortest path and k-nearest neighbor queries that arrive simultaneously at peak periods. Deploying more

LBS servers to process these simultaneous spatial queries is a potential solution. However, this significantly

increases service operating costs. Recently, batch processing solutions have been proposed to process a set

of queries using shareable computation. In this study, we investigate the problem of batch processing

moving k-nearest neighbor (MkNN) queries in dynamic spatial networks, where the travel time of each road

segment changes frequently based on the traffic conditions. LBS servers based on one-query-at-a-time

processing often fail to process simultaneous MkNN queries because of the significant number of redundant

computations. We aim to improve the efficiency algorithmically by processing MkNN queries in batches

and reusing sharable computations. Extensive evaluation using real-world roadmaps shows the superiority of

our solution compared with state-of-the-art methods.

▸Key words: Spatial databases, Moving k-nearest neighbor query, Batch processing, Dynamic spatial network

[요 약]

위치 기반 서비스(LBS)는 가장 바쁜 시간에 동시에 도착하는 최단 경로 및 k-최근접 이웃 질의를

포함한 다양한 공간 질의를 효과적으로 처리한다. 동시에 도착하는 공간 질의를 빠르게 처리하기 위

한 간단한 해결 방법은 LBS 서버를 추가하는 것이다. 이 방법은 서비스 운영 비용을 많이 증가시킨

다. 최근에는 공유 가능한 계산을 사용하여 일련의 질의를 한꺼번에 모아서 처리하는 일괄 처리 방

법이 제안되었다. 본 연구에서는 교통 상황에 따라 각 도로 구간의 이동 시간이 빈번하게 변하는 동

적 공간 네트워크에서 움직이는 k-최근접 이웃 질의를 한꺼번에 처리하는 방법을 연구한다. 순차적

질의 처리를 기반으로 하는 LBS 서버는 중복 계산으로 인해 한꺼번에 요청이 들어오는 움직이는 k-

최근접 이웃 질의를 효과적으로 처리하지 못한다. 본 연구의 목표는 움직이는 k-최근접 이웃 질의를

한꺼번에 처리하고 공유 가능한 계산을 재사용하여 알고리즘을 효율성을 개선한다. 실제 지도 데이

터를 사용한 실험 평가는 최신 방법보다 제안된 방법이 우수하다는 것을 보여준다.

▸주제어: 공간 데이터베이스, 움직이는 k-최근접 이웃 질의, 일괄 처리, 동적 공간 네트워크

∙First Author: Hyung-Ju Cho, Corresponding Author: Hyung-Ju Cho
 *Hyung-Ju Cho (hyungju@knu.ac.kr), Dept. of Software, Kyungpook National University
∙Received: 2021. 02. 18, Revised: 2021. 03. 31, Accepted: 2021. 03. 31.

Copyright ⓒ 2021 The Korea Society of Computer and Information
 http://www.ksci.re.kr pISSN:1598-849X | eISSN:2383-9945

64 Journal of The Korea Society of Computer and Information

I. Introduction

Currently, location-based services (LBSs), such

as taxi-calling and ridesharing services, utilize

real-time spatial data to find k points of interest

(POI) closest to a query point based on the length

of the shortest path from the query point to the

POI. For example, a taxi client wishes to be served

by available taxicabs that can reach them quickly.

LBS servers based on one-query-at-a-time

processing often fail to process a large number of

simultaneous spatial queries reaching the servers

at the peak time. Hence, batch processing

algorithms have been introduced to address this

critical problem in LBSs [1, 2].

Here, we investigate the batch processing of

moving k-nearest neighbor (MkNN) queries in

dynamic spatial networks, where the travel time for

each road segment changes frequently based on the

traffic conditions such as the traffic volume and

accidents. MkNN queries in a dynamic spatial

network have many potential applications for LBSs,

such as ride-hailing and car parks. For example, 14

million Uber trips for ridesharing were completed

each day in 2019, demonstrating the significance of

scalable and efficient solutions to promptly match

Uber cabs with passengers. Another example is

real-time parking management, which helps drivers

find parking spaces nearest to them. It is often

difficult for drivers to find available parking spaces

when they reach their destinations.

Figure 1 shows two snapshots at timestamps 

and  of a dynamic spatial network, where a set Q

of moving query points and a set P of moving data

points are expressed as    and

  , respectively. Note that for the

convenience of presentation, two road segments

 and  are identified using a double solid

line to represent changes in the travel time of

these road segments, as shown in Figure 1(b). In

Figure 1(a), data point p1 is closest to both q1 and

q2 at timestamp ti. However, in Figure 1(b), data

point p1 (p2) is closest to q2 (q1) at timestamp tj. A

simple solution for MkNN queries uses a

one-query-at-a-time method, which computes k

data points that are closest to each query point in

Q sequentially. This solution introduces a

prohibitive overhead because of redundant network

traversal for adjacent query points, despite utilizing

efficient kNN search algorithms [3, 4, 5, 6] for

retrieving a set of k data points closest to the

query point.

(a) Snapshot of query and data points at timestamp 

(b) Snapshot of query and data points at timestamp 

Fig. 1. Example of MkNN queries in a dynamic spatial network

All nearest neighbor (ANN) queries [7] are similar

to MkNN queries. However, ANN queries retrieve

only one data point closest to each query point q in

Q, indicating    for each ∈ . Contrarily,

MkNN queries retrieve a different number of k data

points closest to each query point q. Furthermore,

we consider a highly dynamic situation where both

the query and data points move freely in dynamic

spatial networks. Herein, we propose an efficient

algorithm known as BANK for the batch processing

of MkNN queries in dynamic spatial networks. The

BANK algorithm first groups adjacent query points

into a query group and performs batch

computation for the query group to avoid

A Batch Processing Algorithm for Moving k-Nearest Neighbor Queries in Dynamic Spatial Networks 65

redundant network traversal. To our study, the

batch computation approach has not been applied

to MkNN queries in dynamic spatial networks;

however, the batch computation of spatial queries

has received significant attention.

The primary contributions of this study are listed

as follows:

� We propose an efficient algorithm called BANK

for the batch processing of MkNN queries in

dynamic spatial networks. To our study, the

BANK algorithm is the first to consider the

batch processing of MkNN queries in dynamic

spatial networks.

� We present group computation techniques to

avoid the redundant computation of network

distances for adjacent query points.

Furthermore, we present a theoretical analysis

to prove the advantage of the BANK algorithm

over one-query-at-a-time methods.

� We conduct extensive experiments using real-

world roadmaps to demonstrate the efficiency of

the proposed solution.

The remainder of this paper is organized as

follows. In Section II, we review related studies and

introduce the background of the study. In Section

III, we explain the method for clustering adjacent

query points into a query group and present the

BANK algorithm for the batch processing of MkNN

queries in dynamic spatial networks. In Section IV,

we compare the BANK algorithm and its

conventional solutions with different setups.

Conclusions are presented in Section V.

II. Preliminaries

1. Related works

Nearest neighbor (NN) queries have been

investigated extensively in spatial networks. NN

query processing for spatial networks involves a

high cost for computing the length of the shortest

path between two points, in which graph traversal

may be required. Studies regarding NN queries in

spatial networks have presented various techniques

to reduce the shortest-path-distance computation.

Papadias et al. [4] introduced the incremental

Euclidean restriction (IER) and incremental network

expansion (INE). IER is based on the assumption that

the length of the shortest path between two points

cannot be less than their Euclidean distance. INE

involves network expansion from the query point in

a manner similar to Dijkstra’s algorithm and

examines the data points in the sequence

encountered. The distance browsing (DisBrw)

algorithm [8] uses the spatially induced linkage

cognizance index, which stores the shortest path

distance between every pair of vertices. The route

overlay and association directory (ROAD) [3]

algorithm hierarchically partitions the spatial

network and precomputes the shortest path distance

between border vertices within each partition, where

border vertices of a partition are the vertices

connecting to other partitions. The G-tree [6]

partitions the spatial network; however, it differs

from the ROAD in terms of the tree structure and

searching paradigm. The V-tree [5] employs a

hierarchical structure similar to that of the G-tree;

it identifies border nodes at the boundaries of

subgraphs. Efficient techniques are used to answer

kNN queries by maintaining the lists of data points

closest to the border nodes. Abeywickrama et al. [9]

performed a thorough experimental evaluation of

several kNN search algorithms for spatial networks,

including G-tree [6], IER [4], INE [4], DisBrw [8], and

ROAD [3]. Cao et al. [10] proposed a scalable

in-memory processing method to answer snapshot

kNN queries over moving objects in a spatial

network. Unfortunately, existing solutions in [9, 11,

12, 13] focused on improving the efficiency of a kNN

query, and are referred to as one-query-at-a-time

solutions for kNN queries.

ANN queries were investigated in [7]. Unlike

MkNN queries, ANN queries stipulate that every

query point q in Q retrieves only one data point

closest to q, which means   . Most studies

regarding ANN queries have been conducted in

66 Journal of The Korea Society of Computer and Information

Euclidean spaces. Several previous studies have

solved the continuous kNN query problem in spatial

networks [14, 15, 16]. Some models [14] have

assumed moving query points and stationary data

points. However, the models used in [15, 16]

assumed the opposite. These studies are orthogonal

to ours and focus on the efficient maintenance of

kNN results. The current study considers multiple

snapshot kNN queries such as Uber taxi services,

where query and data points correspond to

passengers and taxicabs, respectively, and both

freely move along a dynamic spatial network.

2. Background

Definition 1. (kNN query) For a positive integer k,

query point q, and set of data points P, the kNN

query retrieves a set   of k data points in P

that are closest to q,   ≤   for

∈  and ∈  .

Definition 2. (MkNN query) For a set of query

points Q, the MkNN query retrieves set   of k

data points closest to each query point q in Q.

When query point qi (qj) retrieves ki (kj) data points

closest to qi (qj), the ki value may differ from the kj

value for  ≠  and  ≤  ≤ ∣∣ . For

simplicity, we assume that each query point, q,

requires the same number of k data points closest

to q. However, it is not difficult to consider a

different number of k data points closest to the

query point, q, which is discussed in Section III.2.

Definition 3. (Spatial network) A dynamic spatial

network can be described as a dynamic weighted

graph  〈〉, where V, E, and W indicate

the vertex set, edge set, and edge distance matrix,

respectively. Each edge  has a non-negative

weight representing the network distance, such as

the travel time, and frequent changes in its weight.

Definition 4. (Intersection, intermediate, and

terminal vertices) We categorize vertices into three

categories based on their degree. (1) If the degree

of a vertex is greater than or equal to three, then

the vertex is an intersection vertex. (2) If the

degree is two, then it is an intermediate vertex. (3)

If the degree is one, then it is a terminal vertex.

The symbols and notations used in this study are

listed in Table 1. To simplify the presentation, we

denote   ⋯  by  , where query points

 ⋯  are located in the same vertex

sequence.

Symbol Definition

 Number of requested NNs

 Query point

 Data point

 Set of query points

 Set of data points

 Set of k data points closest to a query

point

 Set of data points that belong to a

segment

 Length of the shortest path connecting

two points p and q in the spatial

network

len(p,q) Length of the segment connecting two

points p and q such that both p and q

are in the same vertex sequence

 ⋯  Vertex sequence where  and  are

not intermediate vertices, and the other

vertices, ⋯ , are intermediate

vertices

 ⋯ 
Query segment comprising query points

 ⋯  in a vertex sequence (in

short, )

adj_seqs(v) Number of query segments adjacent to a

vertex v

Table 1. Definitions of symbols

III. The Proposed Scheme

1. Grouping adjacent query points

In this section, we consider an MkNN query in a

spatial network, as shown in Figure 2. For

  , and   , we

consider a kNN query that retrieves data points

closest to each query point q in Q. For simplicity,

we assume that q1, q2, q3, and q4 request one, two,

one, and two data points closest to them,

respectively, which means that      and

    .

A Batch Processing Algorithm for Moving k-Nearest Neighbor Queries in Dynamic Spatial Networks 67

Algorithm 1: BANK()

Input: : set of query points, : set of data points

Output: : set of ordered pairs of each query point q in Q and its kNN set, i.e., 〈〉∣∈.

1 ← ∅ // the result set  is initialized to the empty set.

2 // adjacent query points in the same vertex sequence are grouped into a query group, which is explained in Section III.1.

3 ← group_points() // adjacent query points   ⋯  in a vertex sequence are grouped into .

4 // data points closest to each query point in  are retrieved, which is detailed in Algorithm 2.

5 for each query segment ∈
 do

6 ← BkNN_search // 〈〉∣∈
7 ← ∪  // the result for each query point in a query group  is added to .

8 return  //  is returned after the BkNN search for all query groups in  is executed.

(a) Distribution of query and data points at 

(b) Distribution of query and data points at 

Fig. 2. Population of query and data points at

timestamps  and 

Figure 2 shows the population of the query and

data points at timestamps  and . Here, we

assume that both the query and data points move

arbitrarily along the spatial network. In this

section, we focus on evaluating MkNN queries at

timestamp, , in Figure 2(a).

Fig. 3. Grouping of adjacent query points into query

segments

Figure 3 illustrates a sample grouping of

adjacent query points. Two query points, q1 and q2,

in a vertex sequence,  , are transformed

into a query segment,  , and the other two

query points, q3 and q4, in a vertex sequence,  ,

are grouped into another query segment, .

Therefore, a set of query points,   

can be transformed into a set of query groups,

 .

2. BANK algorithm

Algorithm 1 describes the BANK algorithm for the

MkNN search over spatial networks. The result set

Π is initialized to an empty set (line 1). In the

first step (lines 2―3), adjacent query points

 ⋯  in the same vertex sequence are

grouped into a query segment . Therefore, a set

Q of query points is converted into a set  of

query groups. The batch kNN (BkNN) search for a

query segment  is performed to obtain data

points closest to each query point in  (line 6).

Result Π for  is added to the query result

Π, where Π 〈〉∈ (line

7). Subsequently, the query result Π is returned

after performing the BkNN search for all query

groups in  (line 8).

Algorithm 2 describes the BkNN search algorithm.

The BkNN search groups query points and batch

execution to avoid redundant network traversal. This

algorithm comprises two steps. First, two kNN

queries are issued for the query segment . We

carefully determined the location of kNN queries

68 Journal of The Korea Society of Computer and Information

Algorithm 2: BkNN_search
Input: : query segment, : set of data points

Output: : set of ordered pairs of each query point q in  and its kNN set, i.e., 〈〉∣∈.
1 ← ∅ //  is initialized to an empty set

2 // assume that a query segment  belongs to a vertex sequence  and that  () is closer to  () than  ().

3 // step 1: a set of candidate data points is computed for all query points in .

4 if adj_seqs≥  and adj_seqs≥  then

5 
 
← max  ⋯  //  is the max k value of   ⋯  in query segments adjacent to .

6 

← kNN_query // kNN query is evaluated for  and its kNN set is saved to 

.

7 

← max ⋯  //  is the max k value of  ⋯  in query segments adjacent to  .

8 

← kNN_query // kNN query is evaluated for  and its kNN set is saved to 

.

9 ← 
∪  

∪  //  is the set of candidate data points for .

10 else if adj_seqs≥  and adj_seqs then

11 
 
← max  ⋯  //  is the max k value of   ⋯  in query segments adjacent to .

12 

← kNN_query // kNN query is evaluated for  and its kNN set is saved to 

.

13   ← max  ⋯  //   is the max k value of query points   ⋯  in .

14  
← kNN_query   // kNN query is evaluated for  and its kNN set is saved to  

.

15 ← 
∪  

∪  //  is the set of candidate data points for .

16 else if adj_seqs and adj_seqs≥  then

17 
 
← max  ⋯  //   is the max k value of query points   ⋯  in .

18 

← kNN_query  // kNN query is evaluated for  and its kNN set is saved to 


.

19 ← max ⋯  //  is the max k value of  ⋯  in query segments adjacent to  .

20 

←  // kNN query is evaluated for  and its kNN set is saved to 


.

21 ← 
∪  

∪  //  is the set of candidate data points for .

22 else

23  ← max  ⋯  //   is the max k value of query points   ⋯  in .

24 

← kNN_query  // kNN query is evaluated for  and its kNN set is saved to 


.

25   ←   //   is the same value as  .

26  
← kNN_query   // kNN query is evaluated for  and its kNN set is saved to  

.

27 ← 
∪  

∪  //  is the set of candidate data points for .

28 // step 2: a set of k NNs for each query point in  is computed using the set  of candidate data points.

29 for each query point ∈ do

30 // kNN search for a query point q is performed using a set  of candidate data points for .

31 ← kNN_search // kNN search for q is performed using a set  of candidate data points.

32 ← ∪ 〈〉 // the kNN set for q is saved to , which is added to .
33 return // query result  is returned for .

using the number of query segments adjacent to an

intersection vertex  () in  to share the

results of kNN queries among the query segments

adjacent to an intersection vertex. We assume that

 belongs to  and that  () is closer to  ()

than  (). The location of one kNN query is either

 or , and the location of another kNN query is

either  or . If more than two query segments are

adjacent to , i.e., adj_segs≥ ,  issues a kNN

query with   max ⋯  assuming that

 ⋯  belong to query segments adjacent to

 and  ⋯  have  ⋯ ,

respectively; otherwise,  issues a kNN query with

 max ⋯  assuming that

 ⋯  constitute  and  ⋯  have

 ⋯ , respectively. Similarly, if more than

A Batch Processing Algorithm for Moving k-Nearest Neighbor Queries in Dynamic Spatial Networks 69

Algorithm 3: kNN_search∪ ∪ 
Input: k: number of data points requested by q, q: query point in  , ∪ ∪ 

: set of candidate data points for q

Output: : set of k data points closest to q

1 ← ∅ //  is initialized to the empty set.

2 for each candidate data point ∈∪ ∪ 
 do

3 // step 1:  is computed according to the condition of p.

4 if ∈∩ ∩ 
 then ← min

5 else if ∈
∩ 

 then ← min

6 else if ∈∩ 
 then ← min

7 else if ∈
∩  then ← min

8 else if ∈
∪  then ← 

9 else if ∈
∪  then ← 

10 else if ∈∪  then ← 

11 // step 2: p is added to  if it satisfies either of the following two conditions.

12 if 〈 then

13 ← ∪ 

14 else if  and 〈 then

15 ← ∪ 

16 return  // the kNN set  for q is returned after all the candidate data points have been examined.

two query segments are adjacent to , i.e., adj_segs

≥ ,  issues another kNN query with

 max ⋯  assuming that

 ⋯  belong to query segments adjacent to

 and  ⋯  have  ⋯ ,

respectively; otherwise,  issues another kNN query

with  max ⋯ . Therefore, we have

the following four cases depending on the locations

of the two kNN queries evaluated for a query

segment : 〈〉, 〈〉, 〈〉, and

〈〉. Specifically, the first case 〈〉 is

described in lines 4―9 of the algorithm. The second

case 〈〉 is described in lines 10―15. The third

case 〈〉 is described in lines 16―21, and the

fourth case 〈〉 is described in lines 22―27.

After these two kNN queries are evaluated for a

query segment , their results are saved to be

included in a set  of the candidate data points

for  ⋯  in . Next, the kNN set  for

each query point q in  is retrieved from candidate

data points in . Subsequently, a pair of query

point q and its kNN set  is added to the result,

as follows: Π← Π∪ 〈〉.

Algorithm 3 describes the kNN search for finding

k data points closest to query point q in  among

the candidate data points in

 αα∪ ββ∪ 
αβ. First, the set  of

kNNs of query point q is initialized to an empty set.

The distance from q to the candidate data point p

is computed based on condition p (lines 3―10).

After computing , we can determine

whether p is added to the candidate kNN set .

If 〈, then p is added to  (lines 12―

13). If   and 〈, then

it is added to  and  is removed from ,

where  denotes the kth data point closest to q,

i.e., ← ∪   (lines 14―15). The

kNN set  for q is returned after all the

candidate data points in  αα∪ ββ∪ 
αβ

have been examined (line 16).

Furthermore, we present a theoretical analysis to

prove the advantages of the BANK algorithm over

sequential processing. The time complexity of the

BANK algorithm is ∣∣ ∙   log,

70 Journal of The Korea Society of Computer and Information

Name Description Vertices Edges Vertex sequences

SF San Francisco, California 174,956 223,001 192,276

COL Colorado 435,666 521,200 374,355

FLA Florida 1,070,376 1,343,951 1,100,675

Table 2. Real-world roadmaps

where  is the number of query segments and

  log is the time complexity for

evaluating a single kNN query. Conversely, the time

complexity of the simple solution based on sequential

processing is ∙   log. This

theoretical analysis shows that the BANK algorithm

is superior to the simple solution when the query

points exhibit a skewed distribution. This is because

≪  is for highly skewed query points.

IV. Performance study

In this section, we present the results of an

empirical analysis of the BANK algorithm. We

describe the experimental settings in Section IV.1

and present the experimental results in Section IV.2.

1. Experimental settings

For the performance study, we used the three

real-world road networks [17, 18] presented in

Table 2. These real-world road networks have

different sizes and are part of the road network of

the US. Table 3 shows the range of each variable

used in the experiments with defaults written in

bold. For convenience, each dimension of the data

universe was normalized independently to a unit

length   . The query and data points exhibited

either a centroid or uniform distribution. A

centroid-based dataset was generated to resemble

real-world data. First, five centroids were randomly

selected for the query and data points. The points

around each centroid exhibited a normal

distribution, where the mean was set to the

centroid, and the standard deviation was set to 1%

of the side length of the data universe. Unless

otherwise stated, the query points exhibited a

centroid distribution, whereas the data points

exhibited a uniform distribution.

As a benchmark for the evaluation of the BANK

algorithm, we used INE [4] as a

one-query-at-a-time solution, which sequentially

computes the kNN set for each query point in Q.

We implemented and evaluated two versions of the

BANK algorithm: BANKOPT and BANKGRP. BANKOPT

was implemented using the proposed algorithms.

Conversely, BANKGRP grouped query points in a

road segment into a query segment and generated

two kNN queries at the endpoints of the query

segment. The BANK algorithm processed the query

points in a batch, whereas INE processed them

sequentially. In this study, we assumed that the

query and data points can move freely within

dynamic spatial networks. Therefore, it was not

feasible to use precomputation techniques because

the movements of the query and data points might

frequently invalidate the precomputed distances in

dynamic spatial networks. The methods were

implemented in C++ in the Microsoft Visual Studio

2019 development environment. Note that C++ and

the development environment use common

subroutines for similar tasks. We performed the

experiments on a desktop computer with a

Windows 10 operating system with a 32 GB RAM

and a 3.1 GHz processor (i9-9900).

Parameter Range

Number of query points 1, 3, 5, 7, 10 (×1000)

Number of data points 1, 3, 5, 7, 10 (×1000)

Number of requested NNs [1,4], [5,8], [9,16],…, [65,128]

Distribution of query points (C)entroid, (U)niform

Distribution of data points (C)entroid, (U)niform

Roadmap SF, COL, FLA

Table 3. Experimental parameter settings

2. Experimental results

Figure 4 shows a comparison of query

processing times using BANKOPT, BANKGRP, and INE

A Batch Processing Algorithm for Moving k-Nearest Neighbor Queries in Dynamic Spatial Networks 71

when evaluating MkNN queries in the SF roadmap.

Each chart illustrates the effects of varying one of

the parameters in Table 3. The two values in

parentheses in Figures 4 and 5 show the query

processing times of BANKOPT and INE. Figure 4(a)

shows the query processing times using BANKOPT,

BANKGRP, and INE when the number  of query

points varied between 1000 and 10000, i.e.,

 ≤ ≤ . BANKOPT outperformed INE

owing to the batch processing of query points as

 increased. BANKOPT evaluated 47%, 25%, 26%,

19%, and 17% of the number of kNN queries

evaluated by INE when  = 1000, 3000, 5000,

7000, and 10000, respectively.

Figure 4(b) shows the query processing times

using the three algorithms when the number 

of data points varied between 1000 and 10000, i.e.,

 ≤ ≤ . The query processing times

using BANKOPT were up to 4.8 times shorter than

those using INE in all cases. As  decreased, the

difference in the query processing times between

BANKOPT and INE increased. BANKOPT evaluated 17%

of the number of kNN queries evaluated by INE

regardless of .

Figure 4(c) shows the query processing times

using the three algorithms when the number of k

data points requested by the query points varied

between 1 and 128, i.e.,  ≤  ≤ . The query

processing times increased with the k value. The

query processing times using BANKOPT were up to

2.7 times shorter than those using INE in all cases.

Figure 4(d) shows the query processing times for

various distributions of the query and data points,

where each ordered pair (i.e., 〈〉, 〈〉,

〈〉, and 〈〉) denotes a combination of

the distributions of the query and data points.

BANKOPT outperformed INE for 〈〉 and

〈〉 distributions when the query points

exhibited a centroid distribution. However, BANKOPT

and INE demonstrated similar performances for

〈〉 and 〈〉 distributions when the

query points exhibited a uniform distribution.

(a) Varying |Q|

(b) Varying |P|

(c) Varying k

(d) Varying point distribution

Fig. 4. Comparison of BANKOPT, BANKGRP, and INE for SF

72 Journal of The Korea Society of Computer and Information

(a) Varying |Q|

(b) Varying |P|

(c) Varying k

(d) Varying point distribution

Fig. 5. Comparison of BANKOPT, BANKGRP, and INE for COL

Figure 5 shows a comparison of query processing

times using BANKOPT, BANKGRP, and INE when

evaluating MkNN queries in the COL roadmap.

Figure 5(a) shows the query processing time as a

function of . The query processing times using

BANKOPT were up to 4.9 times shorter than those

using INE in all cases. INE evaluated  kNN

queries to answer MkNN queries, whereas BANKOPT

evaluated × kNN queries at the maximum

because of the batch processing. Figure 5(b) shows

the query processing time as a function of .

BANKOPT was superior to INE in all cases. This is

because BANKOPT utilizes batch processing of

adjacent query points and requests fewer kNN

queries than INE. Figure 5(c) shows the query

processing time as a function of k. The query

processing times using BANKOPT were up to 5.1

times less than those using INE in all cases. Figure

5(d) shows the query processing times for various

distributions of the query and data points. For a

centroid distribution of query points, i.e., 〈〉

and 〈〉, the query processing times using

BANKOPT were up to 9.9 times shorter than those

using INE. However, for a uniform distribution of

query points (i.e., 〈〉 and 〈〉), BANKOPT

and INE demonstrated similar performances

because the query points were widely scattered, and

BANKOPT and INE performed similarly.

Subsequently, we analyzed the scalability of

BANKOPT and BANKGRP by varying the number 

of query points when the data points exhibited

uniform and centroid distributions. We did not

include the query processing times of INE for the

scalability test because INE yielded poor

performance as  increased. Figure 6 shows the

query processing times using BANKOPT and BANKGRP

for  ≤ ≤ . As shown in Figures 6(a) and

6(c), BANKOPT outperformed BANKGRP for the COL

and FLA roadmaps, respectively, using the

〈〉 distributions. The difference in query

processing times between BANKOPT and BANKGRP

increased with . Similarly, as shown in Figures

6(b) and 6(d), BANKOPT outperformed BANKGRP for

the COL, and FLA roadmaps, respectively, using

the 〈〉 distributions. The difference in query

processing times between BANKOPT and BANKGRP

increased with . The empirical results indicate

A Batch Processing Algorithm for Moving k-Nearest Neighbor Queries in Dynamic Spatial Networks 73

that BANKOPT scaled with  better than BANKGRP.

(a) COL and 〈〉

(b) COL and 〈〉

(c) FLA and 〈〉

(d) FLA and 〈〉

Fig. 6. Scalability test for  ≤ ≤ 

V. Conclusions

In this study, we proposed a batch processing

algorithm, known as BANK, to efficiently process

MkNN queries in dynamic spatial networks. The

BANK algorithm was the first attempt at batch

processing of MkNN queries in dynamic spatial

networks and aimed to minimize the number of kNN

queries requested for highly skewed query points.

Our extensive evaluation using real-world roadmaps

confirmed that the BANK algorithm clearly

outperformed INE based on one-query-at-a-time

processing and scaled well with the number of query

points, particularly when the query points exhibited

a non-uniform distribution. Notably, the BANK

algorithm was up to 9.9 times faster than INE.

However, the BANK and INE showed similar

performances when the query points exhibited a

uniform distribution. For future studies, we plan to

extend the batch processing approach used in this

study to problems on the processing of sophisticated

spatial queries for large dynamic spatial networks.

ACKNOWLEDGEMENT

This research was supported by Basic Science

Research Program through the National Research

Foundation of Korea(NRF) funded by the Ministry

of Education (NRF-2020R1I1A3052713).

REFERENCES

[1] T. Kim, H.-J. Cho, H. J. Hong, H. Nam, H. Cho, G. Y. Do, and

P. Jeon, “Efficient processing of k-farthest neighbor queries for

road networks,” Journal of The Korea Society of Computer and

Information, vol. 24, no. 10, pp. 79−89, 2019.

[2] F. M. Choudhury, J. S. Culpepper, Z. Bao, and T. Sellis, “Batch

processing of top-k spatial-textual queries,” ACM Transactions on

Spatial Algorithms and Systems, vol. 3, no. 4, pp. article ID 13,

2018.

[3] K. C. K. Lee, W.-C. Lee, B. Zheng, and Y. Tian, “ROAD: a

new spatial object search framework for road networks,” IEEE

Transactions on Knowledge and Data Engineering, vol. 24, no.

3, pp. 547−560, 2012.

[4] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query

processing in spatial network databases,” In Proc. of International

Conference on Very Large Data Bases, pp. 802−813, 2003.

[5] B. Shen, Y. Zhao, G. Li, W. Zheng, Y. Qin, B. Yuan, and Y.

Rao, “V-tree: efficient knn search on moving objects with

road-network constraints,” In Proc. of International Conference

74 Journal of The Korea Society of Computer and Information

on Data Engineering, pp. 609−620, 2017.

[6] R. Zhong, G. Li, K.-L. Tan, L. Zhou, and Z. Gong, “G-tree: an

efficient and scalable index for spatial search on road networks,”

IEEE Transactions on Knowledge and Data Engineering, vol. 27,

no. 8, pp. 2175−2189, 2015.

[7] Y. Xu, J. Qi, R. Borovica-Gajic, and L. Kulik, “Finding all nearest

neighbors with a single graph traversal,” In Proc. of International

Conference on Database Systems for Advanced Applications, pp.

221−238, 2018.

[8] H. Samet, J. Sankaranarayanan, and H. Alborzi, “Scalable network

distance browsing in spatial databases,” In Proc. of International

Conference on Mobile Data Management, pp. 43−54, 2008.

[9] T. Abeywickrama and M. A. Cheema, “Efficient landmark-based

candidate generation for knn queries on road networks,” In Proc.

of International Conference on Database Systems for Advanced

Applications, pp. 425−440, 2017.

[10] B. Cao, C. Hou, S. Li, J. Fan, J. Yin, B. Zheng, and J. Bao,

“SIMkNN: a scalable method for in-memory knn search over

moving objects in road networks,” IEEE Transactions on

Knowledge and Data Engineering, vol. 30, no. 10, pp. 1957−

1970, 2018.

[11] T. Dong, Y. Lulu, Y. Shang, Y. Ye, and L. Zhang,

“Direction-aware continuous moving k-nearest-neighbor query

in road networks,” ISPRS International Journal of

Geo-Information, vol. 8, no. 9, article ID 379, 2019.

[12] S. Luo, B. Kao, G. Li, J. Hu, R. Cheng, and Y. Zheng, “TOAIN:

a throughput optimizing adaptive index for answering dynamic

knn queries on road networks,” PVLDB, vol. 11, no. 5, pp. 594−

606, 2018.

[13] Y. Yang, H. Li, J. Wang, Q. Hu, X. Wang, and M. Leng, “A

novel index method for k nearest object query over

time-dependent road networks,” Complexity, vol. 2019, article ID

4829164, 2019.

[14] B. Zheng, K. Zheng, X. Xiao, H. Su, H. Yin, X. Zhou, and G.

Li, “Keyword-aware continuous knn query on road networks,”

In Proc. of International Conference on Data Engineering, pp.

871–882, 2016.

[15] U. Demiryurek, F. B. Kashani, and C. Shahabi, “Efficient

continuous nearest neighbor query in spatial networks using

Euclidean restriction,” In Proc. of International Symposium on

Advances in Spatial and Temporal Databases, pp. 25−43, 2009.

[16] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis,

“Continuous nearest neighbor monitoring in road networks,” In

Proc. of International Conference on Very Large Data Bases,

pp. 43−54, 2006.

[17] 9th DIMACS Implementation Challenge: Shortest Paths.

Available online: http://www.dis.uniroma1.it/challenge9/downlo

ad.shtml (accessed on 17 Feb. 2021).

[18] Real Datasets for Spatial Databases. Available online: https://

www.cs.utah.edu/~lifeifei/SpatialDataset.htm (accessed on 17

Feb. 2021).

Authors

Hyung-Ju Cho is an associate professor at

the department of software, Kyungpook

National University. His current research

interests include moving object databases,

query processing in mobile peer-to-peer

networks, and real-time maintenance of the high definition

digital map for autonomous vehicles.

