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[Abstract] 

Location-based services (LBSs) are expected to process a large number of spatial queries, such as 

shortest path and k-nearest neighbor queries that arrive simultaneously at peak periods. Deploying more 

LBS servers to process these simultaneous spatial queries is a potential solution. However, this significantly 

increases service operating costs. Recently, batch processing solutions have been proposed to process a set 

of queries using shareable computation. In this study, we investigate the problem of batch processing 

moving k-nearest neighbor (MkNN) queries in dynamic spatial networks, where the travel time of each road 

segment changes frequently based on the traffic conditions. LBS servers based on one-query-at-a-time 

processing often fail to process simultaneous MkNN queries because of the significant number of redundant 

computations. We aim to improve the efficiency algorithmically by processing MkNN queries in batches 

and reusing sharable computations. Extensive evaluation using real-world roadmaps shows the superiority of 

our solution compared with state-of-the-art methods.
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[요   약]

위치 기반 서비스(LBS)는 가장 바쁜 시간에 동시에 도착하는 최단 경로 및 k-최근접 이웃 질의를 

포함한 다양한 공간 질의를 효과적으로 처리한다. 동시에 도착하는 공간 질의를 빠르게 처리하기 위

한 간단한 해결 방법은 LBS 서버를 추가하는 것이다. 이 방법은 서비스 운영 비용을 많이 증가시킨

다. 최근에는 공유 가능한 계산을 사용하여 일련의 질의를 한꺼번에 모아서 처리하는 일괄 처리 방

법이 제안되었다. 본 연구에서는 교통 상황에 따라 각 도로 구간의 이동 시간이 빈번하게 변하는 동

적 공간 네트워크에서 움직이는 k-최근접 이웃 질의를 한꺼번에 처리하는 방법을 연구한다. 순차적 

질의 처리를 기반으로 하는 LBS 서버는 중복 계산으로 인해 한꺼번에 요청이 들어오는 움직이는 k-

최근접 이웃 질의를 효과적으로 처리하지 못한다. 본 연구의 목표는 움직이는 k-최근접 이웃 질의를 

한꺼번에 처리하고 공유 가능한 계산을 재사용하여 알고리즘을 효율성을 개선한다. 실제 지도 데이

터를 사용한 실험 평가는 최신 방법보다 제안된 방법이 우수하다는 것을 보여준다.

▸주제어: 공간 데이터베이스, 움직이는 k-최근접 이웃 질의, 일괄 처리, 동적 공간 네트워크
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I. Introduction

Currently, location-based services (LBSs), such 

as taxi-calling and ridesharing services, utilize 

real-time spatial data to find k points of interest 

(POI) closest to a query point based on the length 

of the shortest path from the query point to the 

POI. For example, a taxi client wishes to be served 

by available taxicabs that can reach them quickly. 

LBS servers based on one-query-at-a-time 

processing often fail to process a large number of 

simultaneous spatial queries reaching the servers 

at the peak time. Hence, batch processing 

algorithms have been introduced to address this 

critical problem in LBSs [1, 2]. 

Here, we investigate the batch processing of 

moving k-nearest neighbor (MkNN) queries in 

dynamic spatial networks, where the travel time for 

each road segment changes frequently based on the 

traffic conditions such as the traffic volume and 

accidents. MkNN queries in a dynamic spatial 

network have many potential applications for LBSs, 

such as ride-hailing and car parks. For example, 14 

million Uber trips for ridesharing were completed 

each day in 2019, demonstrating the significance of 

scalable and efficient solutions to promptly match 

Uber cabs with passengers. Another example is 

real-time parking management, which helps drivers 

find parking spaces nearest to them. It is often 

difficult for drivers to find available parking spaces 

when they reach their destinations. 

Figure 1 shows two snapshots at timestamps 

and  of a dynamic spatial network, where a set Q

of moving query points and a set P of moving data 

points are expressed as    and 

  , respectively. Note that for the 

convenience of presentation, two road segments 

 and  are identified using a double solid 

line to represent changes in the travel time of 

these road segments, as shown in Figure 1(b). In 

Figure 1(a), data point p1 is closest to both q1 and 

q2 at timestamp ti. However, in Figure 1(b), data 

point p1 (p2) is closest to q2 (q1) at timestamp tj. A 

simple solution for MkNN queries uses a 

one-query-at-a-time method, which computes k

data points that are closest to each query point in 

Q sequentially. This solution introduces a 

prohibitive overhead because of redundant network 

traversal for adjacent query points, despite utilizing 

efficient kNN search algorithms [3, 4, 5, 6] for 

retrieving a set of k data points closest to the 

query point.

(a) Snapshot of query and data points at timestamp 

(b) Snapshot of query and data points at timestamp 

Fig. 1. Example of MkNN queries in a dynamic spatial network

All nearest neighbor (ANN) queries [7] are similar 

to MkNN queries. However, ANN queries retrieve 

only one data point closest to each query point q in 

Q, indicating    for each ∈ . Contrarily, 

MkNN queries retrieve a different number of k data 

points closest to each query point q. Furthermore, 

we consider a highly dynamic situation where both 

the query and data points move freely in dynamic 

spatial networks. Herein, we propose an efficient 

algorithm known as BANK for the batch processing 

of MkNN queries in dynamic spatial networks. The 

BANK algorithm first groups adjacent query points 

into a query group and performs batch 

computation for the query group to avoid 
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redundant network traversal. To our study, the 

batch computation approach has not been applied 

to MkNN queries in dynamic spatial networks; 

however, the batch computation of spatial queries 

has received significant attention.

The primary contributions of this study are listed 

as follows:

� We propose an efficient algorithm called BANK 

for the batch processing of MkNN queries in 

dynamic spatial networks. To our study, the 

BANK algorithm is the first to consider the 

batch processing of MkNN queries in dynamic 

spatial networks. 

� We present group computation techniques to 

avoid the redundant computation of network 

distances for adjacent query points. 

Furthermore, we present a theoretical analysis 

to prove the advantage of the BANK algorithm 

over one-query-at-a-time methods. 

� We conduct extensive experiments using real-

world roadmaps to demonstrate the efficiency of 

the proposed solution.

The remainder of this paper is organized as 

follows. In Section II, we review related studies and 

introduce the background of the study. In Section 

III, we explain the method for clustering adjacent 

query points into a query group and present the 

BANK algorithm for the batch processing of MkNN 

queries in dynamic spatial networks. In Section IV, 

we compare the BANK algorithm and its 

conventional solutions with different setups. 

Conclusions are presented in Section V.

II. Preliminaries

1. Related works

Nearest neighbor (NN) queries have been 

investigated extensively in spatial networks. NN 

query processing for spatial networks involves a 

high cost for computing the length of the shortest 

path between two points, in which graph traversal 

may be required. Studies regarding NN queries in 

spatial networks have presented various techniques 

to reduce the shortest-path-distance computation. 

Papadias et al. [4] introduced the incremental 

Euclidean restriction (IER) and incremental network 

expansion (INE). IER is based on the assumption that 

the length of the shortest path between two points 

cannot be less than their Euclidean distance. INE 

involves network expansion from the query point in 

a manner similar to Dijkstra’s algorithm and 

examines the data points in the sequence 

encountered. The distance browsing (DisBrw) 

algorithm [8] uses the spatially induced linkage 

cognizance index, which stores the shortest path 

distance between every pair of vertices. The route 

overlay and association directory (ROAD) [3] 

algorithm hierarchically partitions the spatial 

network and precomputes the shortest path distance 

between border vertices within each partition, where 

border vertices of a partition are the vertices 

connecting to other partitions. The G-tree [6] 

partitions the spatial network; however, it differs 

from the ROAD in terms of the tree structure and 

searching paradigm. The V-tree [5] employs a 

hierarchical structure similar to that of the G-tree; 

it identifies border nodes at the boundaries of 

subgraphs. Efficient techniques are used to answer 

kNN queries by maintaining the lists of data points 

closest to the border nodes. Abeywickrama et al. [9] 

performed a thorough experimental evaluation of 

several kNN search algorithms for spatial networks, 

including G-tree [6], IER [4], INE [4], DisBrw [8], and 

ROAD [3]. Cao et al. [10] proposed a scalable 

in-memory processing method to answer snapshot 

kNN queries over moving objects in a spatial 

network. Unfortunately, existing solutions in [9, 11, 

12, 13] focused on improving the efficiency of a kNN 

query, and are referred to as one-query-at-a-time 

solutions for kNN queries.

ANN queries were investigated in [7]. Unlike 

MkNN queries, ANN queries stipulate that every 

query point q in Q retrieves only one data point 

closest to q, which means   . Most studies 

regarding ANN queries have been conducted in 
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Euclidean spaces. Several previous studies have 

solved the continuous kNN query problem in spatial 

networks [14, 15, 16]. Some models [14] have 

assumed moving query points and stationary data 

points. However, the models used in [15, 16] 

assumed the opposite. These studies are orthogonal 

to ours and focus on the efficient maintenance of 

kNN results. The current study considers multiple 

snapshot kNN queries such as Uber taxi services, 

where query and data points correspond to 

passengers and taxicabs, respectively, and both 

freely move along a dynamic spatial network.

2. Background

Definition 1. (kNN query) For a positive integer k, 

query point q, and set of data points P, the kNN 

query retrieves a set   of k data points in P

that are closest to q,   ≤   for 

∈  and ∈  .

Definition 2. (MkNN query) For a set of query 

points Q, the MkNN query retrieves set   of k

data points closest to each query point q in Q. 

When query point qi (qj) retrieves ki (kj) data points 

closest to qi (qj), the ki value may differ from the kj

value for  ≠  and  ≤  ≤ ∣∣ . For 

simplicity, we assume that each query point, q, 

requires the same number of k data points closest 

to q. However, it is not difficult to consider a 

different number of k data points closest to the 

query point, q, which is discussed in Section III.2.

Definition 3. (Spatial network) A dynamic spatial 

network can be described as a dynamic weighted 

graph  〈〉, where V, E, and W indicate 

the vertex set, edge set, and edge distance matrix, 

respectively. Each edge  has a non-negative 

weight representing the network distance, such as 

the travel time, and frequent changes in its weight.

Definition 4. (Intersection, intermediate, and 

terminal vertices) We categorize vertices into three 

categories based on their degree. (1) If the degree 

of a vertex is greater than or equal to three, then 

the vertex is an intersection vertex. (2) If the 

degree is two, then it is an intermediate vertex. (3) 

If the degree is one, then it is a terminal vertex.

The symbols and notations used in this study are 

listed in Table 1. To simplify the presentation, we 

denote   ⋯  by  , where query points 

 ⋯  are located in the same vertex 

sequence.

Symbol Definition

 Number of requested NNs

 Query point

 Data point

 Set of query points

 Set of data points

 Set of k data points closest to a query 

point 

 Set of data points that belong to a 

segment 

 Length of the shortest path connecting 

two points p and q in the spatial 

network

len(p,q) Length of the segment connecting two 

points p and q such that both p and q

are in the same vertex sequence

 ⋯  Vertex sequence where  and  are 

not intermediate vertices, and the other 

vertices, ⋯ , are intermediate 

vertices

 ⋯ 
Query segment comprising query points 

 ⋯  in a vertex sequence (in 

short, )

adj_seqs(v) Number of query segments adjacent to a 

vertex v

Table 1. Definitions of symbols

III. The Proposed Scheme

1. Grouping adjacent query points

In this section, we consider an MkNN query in a 

spatial network, as shown in Figure 2. For 

  , and   , we 

consider a kNN query that retrieves data points 

closest to each query point q in Q. For simplicity, 

we assume that q1, q2, q3, and q4 request one, two, 

one, and two data points closest to them, 

respectively, which means that      and 

    .
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Algorithm 1: BANK()

Input: : set of query points, : set of data points

Output: : set of ordered pairs of each query point q in Q and its kNN set, i.e., 〈〉∣∈.

1 ← ∅ // the result set  is initialized to the empty set.

2 // adjacent query points in the same vertex sequence are grouped into a query group, which is explained in Section III.1.

3 ← group_points() // adjacent query points   ⋯  in a vertex sequence are grouped into .

4 // data points closest to each query point in  are retrieved, which is detailed in Algorithm 2.

5 for each query segment ∈
 do

6 ← BkNN_search // 〈〉∣∈
7 ← ∪  // the result for each query point in a query group  is added to .

8 return  //  is returned after the BkNN search for all query groups in  is executed.

(a) Distribution of query and data points at 

(b) Distribution of query and data points at 

Fig. 2. Population of query and data points at 

timestamps  and 

Figure 2 shows the population of the query and 

data points at timestamps  and . Here, we 

assume that both the query and data points move 

arbitrarily along the spatial network. In this 

section, we focus on evaluating MkNN queries at 

timestamp, , in Figure 2(a).

Fig. 3. Grouping of adjacent query points into query 

segments 

Figure 3 illustrates a sample grouping of 

adjacent query points. Two query points, q1 and q2, 

in a vertex sequence,  , are transformed 

into a query segment,  , and the other two 

query points, q3 and q4, in a vertex sequence,  , 

are grouped into another query segment, . 

Therefore, a set of query points,   

can be transformed into a set of query groups, 

 .

2. BANK algorithm 

Algorithm 1 describes the BANK algorithm for the 

MkNN search over spatial networks. The result set 

Π is initialized to an empty set (line 1). In the 

first step (lines 2―3), adjacent query points 

 ⋯  in the same vertex sequence are 

grouped into a query segment . Therefore, a set 

Q of query points is converted into a set  of 

query groups. The batch kNN (BkNN) search for a 

query segment  is performed to obtain data 

points closest to each query point in  (line 6). 

Result Π for  is added to the query result 

Π, where Π 〈〉∈ (line 

7). Subsequently, the query result Π is returned 

after performing the BkNN search for all query 

groups in  (line 8).

Algorithm 2 describes the BkNN search algorithm. 

The BkNN search groups query points and batch 

execution to avoid redundant network traversal. This 

algorithm comprises two steps. First, two kNN 

queries are issued for the query segment . We 

carefully determined the location of kNN queries 
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Algorithm 2: BkNN_search
Input: : query segment, : set of data points 

Output: : set of ordered pairs of each query point q in  and its kNN set, i.e., 〈〉∣∈.
1 ← ∅ //  is initialized to an empty set

2 // assume that a query segment  belongs to a vertex sequence  and that  () is closer to  () than  ().

3 // step 1: a set of candidate data points is computed for all query points in .

4 if adj_seqs≥  and adj_seqs≥  then

5 
 
← max  ⋯  //  is the max k value of   ⋯  in query segments adjacent to .

6 

← kNN_query // kNN query is evaluated for  and its kNN set is saved to 

.

7 

← max ⋯  //  is the max k value of  ⋯  in query segments adjacent to  .

8 

← kNN_query // kNN query is evaluated for  and its kNN set is saved to 

.

9 ← 
∪  

∪  //  is the set of candidate data points for .

10 else if adj_seqs≥  and adj_seqs then

11 
 
← max  ⋯  //  is the max k value of   ⋯  in query segments adjacent to .

12 

← kNN_query // kNN query is evaluated for  and its kNN set is saved to 

.

13   ← max  ⋯  //   is the max k value of query points   ⋯  in .

14  
← kNN_query   // kNN query is evaluated for  and its kNN set is saved to  

.

15 ← 
∪  

∪  //  is the set of candidate data points for .

16 else if adj_seqs and adj_seqs≥  then

17 
 
← max  ⋯  //   is the max k value of query points   ⋯  in .

18 

← kNN_query  // kNN query is evaluated for  and its kNN set is saved to 


.

19 ← max ⋯  //  is the max k value of  ⋯  in query segments adjacent to  .

20 

←  // kNN query is evaluated for  and its kNN set is saved to 


.

21 ← 
∪  

∪  //  is the set of candidate data points for .

22 else

23  ← max  ⋯  //   is the max k value of query points   ⋯  in .

24 

← kNN_query  // kNN query is evaluated for  and its kNN set is saved to 


.

25   ←   //   is the same value as  .

26  
← kNN_query   // kNN query is evaluated for  and its kNN set is saved to  

.

27 ← 
∪  

∪  //  is the set of candidate data points for .

28 // step 2: a set of k NNs for each query point in  is computed using the set  of candidate data points.

29 for each query point ∈ do

30 // kNN search for a query point q is performed using a set  of candidate data points for .

31 ← kNN_search // kNN search for q is performed using a set  of candidate data points.

32 ← ∪ 〈〉 // the kNN set for q is saved to , which is added to .
33 return // query result  is returned for .

using the number of query segments adjacent to an 

intersection vertex  () in  to share the 

results of kNN queries among the query segments 

adjacent to an intersection vertex. We assume that 

 belongs to  and that  () is closer to  () 

than  (). The location of one kNN query is either 

 or , and the location of another kNN query is 

either  or . If more than two query segments are 

adjacent to , i.e., adj_segs≥ ,  issues a kNN 

query with   max ⋯  assuming that 

 ⋯  belong to query segments adjacent to 

 and  ⋯  have  ⋯ , 

respectively; otherwise,  issues a kNN query with 

 max ⋯  assuming that 

 ⋯  constitute  and  ⋯  have 

 ⋯ , respectively. Similarly, if more than 
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Algorithm 3: kNN_search∪ ∪ 
Input: k: number of data points requested by q, q: query point in  , ∪ ∪ 

: set of candidate data points for q

Output: : set of k data points closest to q

1 ← ∅ //  is initialized to the empty set.

2 for each candidate data point ∈∪ ∪ 
 do

3 // step 1:  is computed according to the condition of p.

4 if ∈∩ ∩ 
 then ← min

5 else if ∈
∩ 

 then ← min

6 else if ∈∩ 
 then ← min

7 else if ∈
∩  then ← min

8 else if ∈
∪  then ← 

9 else if ∈
∪  then ← 

10 else if ∈∪  then ← 

11 // step 2: p is added to  if it satisfies either of the following two conditions. 

12 if 〈 then

13 ← ∪ 

14 else if  and 〈 then

15 ← ∪ 

16 return  // the kNN set  for q is returned after all the candidate data points have been examined.

two query segments are adjacent to , i.e., adj_segs

≥ ,  issues another kNN query with 

 max ⋯  assuming that 

 ⋯  belong to query segments adjacent to 

 and  ⋯  have  ⋯ , 

respectively; otherwise,  issues another kNN query 

with  max ⋯ . Therefore, we have 

the following four cases depending on the locations 

of the two kNN queries evaluated for a query 

segment : 〈〉, 〈〉, 〈〉, and 

〈〉. Specifically, the first case 〈〉 is 

described in lines 4―9 of the algorithm. The second 

case 〈〉 is described in lines 10―15. The third 

case 〈〉 is described in lines 16―21, and the 

fourth case 〈〉 is described in lines 22―27. 

After these two kNN queries are evaluated for a 

query segment , their results are saved to be 

included in a set  of the candidate data points 

for  ⋯  in . Next, the kNN set  for 

each query point q in  is retrieved from candidate 

data points in . Subsequently, a pair of query 

point q and its kNN set  is added to the result, 

as follows: Π← Π∪ 〈〉. 

Algorithm 3 describes the kNN search for finding 

k data points closest to query point q in  among 

the candidate data points in 

 αα∪ ββ∪ 
αβ. First, the set  of 

kNNs of query point q is initialized to an empty set. 

The distance from q to the candidate data point p

is computed based on condition p (lines 3―10). 

After computing , we can determine 

whether p is added to the candidate kNN set . 

If 〈, then p is added to  (lines 12―

13). If   and 〈, then 

it is added to  and  is removed from , 

where  denotes the kth data point closest to q, 

i.e., ← ∪   (lines 14―15). The 

kNN set  for q is returned after all the 

candidate data points in  αα∪ ββ∪ 
αβ

have been examined (line 16).

Furthermore, we present a theoretical analysis to 

prove the advantages of the BANK algorithm over 

sequential processing. The time complexity of the 

BANK algorithm is ∣∣ ∙   log, 
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Name Description Vertices Edges Vertex sequences

SF San Francisco, California 174,956 223,001 192,276

COL Colorado 435,666 521,200 374,355

FLA Florida 1,070,376 1,343,951 1,100,675

Table 2. Real-world roadmaps

where  is the number of query segments and 

  log is the time complexity for 

evaluating a single kNN query. Conversely, the time 

complexity of the simple solution based on sequential 

processing is ∙   log. This 

theoretical analysis shows that the BANK algorithm 

is superior to the simple solution when the query 

points exhibit a skewed distribution. This is because 

≪  is for highly skewed query points. 

IV. Performance study

In this section, we present the results of an 

empirical analysis of the BANK algorithm. We 

describe the experimental settings in Section IV.1 

and present the experimental results in Section IV.2.

1. Experimental settings

For the performance study, we used the three 

real-world road networks [17, 18] presented in 

Table 2. These real-world road networks have 

different sizes and are part of the road network of 

the US. Table 3 shows the range of each variable 

used in the experiments with defaults written in 

bold. For convenience, each dimension of the data 

universe was normalized independently to a unit 

length   . The query and data points exhibited 

either a centroid or uniform distribution. A 

centroid-based dataset was generated to resemble 

real-world data. First, five centroids were randomly 

selected for the query and data points. The points 

around each centroid exhibited a normal 

distribution, where the mean was set to the 

centroid, and the standard deviation was set to 1% 

of the side length of the data universe. Unless 

otherwise stated, the query points exhibited a 

centroid distribution, whereas the data points 

exhibited a uniform distribution.

As a benchmark for the evaluation of the BANK 

algorithm, we used INE [4] as a 

one-query-at-a-time solution, which sequentially 

computes the kNN set for each query point in Q. 

We implemented and evaluated two versions of the 

BANK algorithm: BANKOPT and BANKGRP. BANKOPT

was implemented using the proposed algorithms. 

Conversely, BANKGRP grouped query points in a 

road segment into a query segment and generated 

two kNN queries at the endpoints of the query 

segment. The BANK algorithm processed the query 

points in a batch, whereas INE processed them 

sequentially. In this study, we assumed that the 

query and data points can move freely within 

dynamic spatial networks. Therefore, it was not 

feasible to use precomputation techniques because 

the movements of the query and data points might 

frequently invalidate the precomputed distances in 

dynamic spatial networks. The methods were 

implemented in C++ in the Microsoft Visual Studio 

2019 development environment. Note that C++ and 

the development environment use common 

subroutines for similar tasks. We performed the 

experiments on a desktop computer with a 

Windows 10 operating system with a 32 GB RAM 

and a 3.1 GHz processor (i9-9900). 

Parameter Range

Number of query points 1, 3, 5, 7, 10 (×1000)

Number of data points 1, 3, 5, 7, 10 (×1000)

Number of requested NNs [1,4], [5,8], [9,16],…, [65,128]

Distribution of query points (C)entroid, (U)niform 

Distribution of data points (C)entroid, (U)niform

Roadmap SF, COL, FLA

Table 3. Experimental parameter settings

2. Experimental results

Figure 4 shows a comparison of query 

processing times using BANKOPT, BANKGRP, and INE 
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when evaluating MkNN queries in the SF roadmap. 

Each chart illustrates the effects of varying one of 

the parameters in Table 3. The two values in 

parentheses in Figures 4 and 5 show the query 

processing times of BANKOPT and INE. Figure 4(a) 

shows the query processing times using BANKOPT, 

BANKGRP, and INE when the number  of query 

points varied between 1000 and 10000, i.e., 

 ≤ ≤ . BANKOPT outperformed INE 

owing to the batch processing of query points as 

 increased. BANKOPT evaluated 47%, 25%, 26%, 

19%, and 17% of the number of kNN queries 

evaluated by INE when  = 1000, 3000, 5000, 

7000, and 10000, respectively. 

Figure 4(b) shows the query processing times 

using the three algorithms when the number 

of data points varied between 1000 and 10000, i.e., 

 ≤ ≤ . The query processing times 

using BANKOPT were up to 4.8 times shorter than 

those using INE in all cases. As  decreased, the 

difference in the query processing times between 

BANKOPT and INE increased. BANKOPT evaluated 17% 

of the number of kNN queries evaluated by INE 

regardless of . 

Figure 4(c) shows the query processing times 

using the three algorithms when the number of k

data points requested by the query points varied 

between 1 and 128, i.e.,  ≤  ≤ . The query 

processing times increased with the k value. The 

query processing times using BANKOPT were up to 

2.7 times shorter than those using INE in all cases. 

Figure 4(d) shows the query processing times for 

various distributions of the query and data points, 

where each ordered pair (i.e., 〈〉, 〈〉, 

〈〉, and 〈〉) denotes a combination of 

the distributions of the query and data points. 

BANKOPT outperformed INE for 〈〉 and 

〈〉 distributions when the query points 

exhibited a centroid distribution. However, BANKOPT

and INE demonstrated similar performances for 

〈〉 and 〈〉 distributions when the 

query points exhibited a uniform distribution.

(a) Varying |Q|

(b) Varying |P|

(c) Varying k

(d) Varying point distribution

Fig. 4. Comparison of BANKOPT, BANKGRP, and INE for SF
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(a) Varying |Q|

(b) Varying |P|

(c) Varying k

(d) Varying point distribution

Fig. 5. Comparison of BANKOPT, BANKGRP, and INE for COL

Figure 5 shows a comparison of query processing 

times using BANKOPT, BANKGRP, and INE when 

evaluating MkNN queries in the COL roadmap. 

Figure 5(a) shows the query processing time as a 

function of . The query processing times using 

BANKOPT were up to 4.9 times shorter than those 

using INE in all cases. INE evaluated  kNN 

queries to answer MkNN queries, whereas BANKOPT

evaluated × kNN queries at the maximum 

because of the batch processing. Figure 5(b) shows 

the query processing time as a function of . 

BANKOPT was superior to INE in all cases. This is 

because BANKOPT utilizes batch processing of 

adjacent query points and requests fewer kNN 

queries than INE. Figure 5(c) shows the query 

processing time as a function of k. The query 

processing times using BANKOPT were up to 5.1 

times less than those using INE in all cases. Figure 

5(d) shows the query processing times for various 

distributions of the query and data points. For a 

centroid distribution of query points, i.e., 〈〉

and 〈〉, the query processing times using 

BANKOPT were up to 9.9 times shorter than those 

using INE. However, for a uniform distribution of 

query points (i.e., 〈〉 and 〈〉), BANKOPT

and INE demonstrated similar performances 

because the query points were widely scattered, and 

BANKOPT and INE performed similarly.

Subsequently, we analyzed the scalability of 

BANKOPT and BANKGRP by varying the number 

of query points when the data points exhibited 

uniform and centroid distributions. We did not 

include the query processing times of INE for the 

scalability test because INE yielded poor 

performance as  increased. Figure 6 shows the 

query processing times using BANKOPT and BANKGRP

for  ≤ ≤ . As shown in Figures 6(a) and 

6(c), BANKOPT outperformed BANKGRP for the COL 

and FLA roadmaps, respectively, using the 

〈〉 distributions. The difference in query 

processing times between BANKOPT and BANKGRP

increased with . Similarly, as shown in Figures 

6(b) and 6(d), BANKOPT outperformed BANKGRP for 

the COL, and FLA roadmaps, respectively, using 

the 〈〉 distributions. The difference in query 

processing times between BANKOPT and BANKGRP

increased with . The empirical results indicate 
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that BANKOPT scaled with  better than BANKGRP.

(a) COL and 〈〉

(b) COL and 〈〉

(c) FLA and 〈〉

(d) FLA and 〈〉

Fig. 6. Scalability test for  ≤ ≤ 

V. Conclusions

In this study, we proposed a batch processing 

algorithm, known as BANK, to efficiently process 

MkNN queries in dynamic spatial networks. The 

BANK algorithm was the first attempt at batch 

processing of MkNN queries in dynamic spatial 

networks and aimed to minimize the number of kNN 

queries requested for highly skewed query points. 

Our extensive evaluation using real-world roadmaps 

confirmed that the BANK algorithm clearly 

outperformed INE based on one-query-at-a-time 

processing and scaled well with the number of query 

points, particularly when the query points exhibited 

a non-uniform distribution. Notably, the BANK 

algorithm was up to 9.9 times faster than INE. 

However, the BANK and INE showed similar 

performances when the query points exhibited a 

uniform distribution. For future studies, we plan to 

extend the batch processing approach used in this 

study to problems on the processing of sophisticated 

spatial queries for large dynamic spatial networks.
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