DOI QR코드

DOI QR Code

Papaverine Exerts Neuroprotective Effect by Inhibiting NLRP3 Inflammasome Activation in an MPTP-Induced Microglial Priming Mouse Model Challenged with LPS

  • Leem, Yea-Hyun (Department of Molecular Medicine and the Ewha Medical Research Institute, School of Medicine, Ewha Womans University) ;
  • Park, Jin-Sun (Department of Molecular Medicine and the Ewha Medical Research Institute, School of Medicine, Ewha Womans University) ;
  • Park, Jung-Eun (Department of Molecular Medicine and the Ewha Medical Research Institute, School of Medicine, Ewha Womans University) ;
  • Kim, Do-Yeon (Department of Molecular Medicine and the Ewha Medical Research Institute, School of Medicine, Ewha Womans University) ;
  • Kim, Hee-Sun (Department of Molecular Medicine and the Ewha Medical Research Institute, School of Medicine, Ewha Womans University)
  • Received : 2021.02.26
  • Accepted : 2021.03.26
  • Published : 2021.05.01

Abstract

Microglial priming is the process of microglial proliferation and activation in response to neurodegeneration and abnormal protein accumulation. Priming makes microglia susceptible to secondary inflammatory stimuli and causes exaggerated inflammatory responses. In the present study, we established a microglial priming model in mice by administering a single injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg). MPTP induced microglial activation without dopaminergic degeneration; however, subsequent treatment with a sub-toxic dose of lipopolysaccharides (LPS) induced an amplified inflammatory response and caused nigrostriatal dopaminergic degeneration. These pathological and inflammatory changes, including microglial activation and dopaminergic cell loss in the substantia nigra (SN) area were reversed by papaverine (PAP) administration. In addition, MPTP/LPS enhanced interleukin-1β (IL-1β) expression and processing via nod-like receptor protein 3 (NLRP3) inflammasome activation in the SN region of mice. However, PAP treatment suppressed inflammasome activation and subsequent IL-1β maturation. Moreover, PAP inhibited nuclear factor-κB (NF-κB) and enhanced cAMP-response element binding protein (CREB) activity in the SN of MPTP/LPS mice. These results suggest that PAP inhibits the activation of NLRP3 inflammasome by modulating NF-κB and CREB signaling pathways, which results in reduced microglial activation and neuronal cell death. Thus, PAP may be a potential candidate for the treatment of Parkinsons's disease, which is aggravated by systemic inflammation.

Keywords

References

  1. Dwyer, Z., Rudyk, C., Thompson, A., Farmer, K., Fenner, B., Fortin, T., Derksen, A., Sun, H. and Hayley, S.; CLINT (Canadian LRRK2 in inflammation team) (2020) Leucine-rich repeat kinase-2 (LRRK2) modulates microglial phenotype and dopaminergic neurodegeneration. Neurobiol. Aging 91, 45-55. https://doi.org/10.1016/j.neurobiolaging.2020.02.017
  2. Giralt, A., Saavedra, A., Carreton, O., Arumi, H., Tyebji, S., Alberch, J. and Perez-Navarro, E. (2013) PDE10 inhibition increases GluA1 and CREB phosphorylation and improves spatial and recognition memories in a Huntington's disease mouse model. Hippocampus 23, 684-695. https://doi.org/10.1002/hipo.22128
  3. Gordon, R., Albornoz, E. A., Christie, D. C., Langley, M. R., Kumar, V., Mantovani, S., Robertson, A. A. B., Butler, M. S., Rowe, D. B., O'Neill, L. A., Kanthasamy, A. G., Schroder, K., Cooper, M. A. and Woodruff, T. M. (2018) Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 10, eaah4066. https://doi.org/10.1126/scitranslmed.aah4066
  4. Han, X., Lamshoft, M., Grobe, N., Ren, X., Fist, A. J., Kutchan, T. M., Spiteller, M. and Zenk, M. H. (2010) The biosynthesis of papaverine proceeds via (S)-reticuline. Phytochemistry 71, 1305-1312. https://doi.org/10.1016/j.phytochem.2010.04.022
  5. Hebert, G., Arsaut, J., Dantzer, R. and Demotes-Mainard, J. (2003) Time-course of the expression of inflammatory cytokines and matrix metalloproteinases in the striatum and mesencephalon of mice injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a dopaminergic neurotoxin. Neurosci. Lett. 349, 191-195. https://doi.org/10.1016/S0304-3940(03)00832-2
  6. von Herrmann, K. M., Salas, L. A., Martinez, E. M., Young, A. L., Howard, J. M., Feldman, M. S., Christensen, B. C., Wilkins, O. M., Lee, S. L., Hickey, W. F. and Havrda, M. C. (2018) NLRP3 expression in mesencephalic neurons and characterization of a rare NLRP3 polymorphism associated with decreased risk of Parkinson's disease. NPJ Parkinsons Dis. 4, 24 https://doi.org/10.1038/s41531-018-0061-5
  7. Koprich, J. B., Reske-Nielsen, C., Mithal, P. and Isacson, O. (2008) Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson's disease. J. Neuroinflammation 5, 8. https://doi.org/10.1186/1742-2094-5-8
  8. Langston, J. W., Forno, L. S., Tetrud, J., Reeves, A. G., Kaplan, J. A. and Karluk, D. (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann. Neurol. 46, 598-605. https://doi.org/10.1002/1531-8249(199910)46:4<598::AID-ANA7>3.0.CO;2-F
  9. Lee, E., Hwang, I., Park, S., Hong, S., Hwang, B., Cho, Y., Son, J. and Yu, J. W. (2019a) MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ. 26, 213-228. https://doi.org/10.1038/s41418-018-0124-5
  10. Lee, G. S., Subramanian, N., Kim, A. I., Aksentijevich, I., GoldbachMansky, R., Sacks, D. B., Germain, R. N., Kastner, D. L. and Chae, J. J. (2012) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123-127. https://doi.org/10.1038/nature11588
  11. Lee, Y. Y., Park, J. S., Leem, Y. H., Park, J. E., Kim, D. Y., Choi, Y. H., Park, E. M., Kang, J. L. and Kim, H. S. (2019b) The phosphodiesterase 10 inhibitor papaverine exerts anti-inflammatory and neuroprotective effects via the PKA signaling pathway in neuroinflammation and Parkinson's disease mouse models. J. Neuroinflammation 16, 246. https://doi.org/10.1186/s12974-019-1649-3
  12. Leem, Y. H., Park, J. S., Park, J. E., Kim, D. Y., Kang, J. L. and Kim, H. S. (2020) Papaverine inhibits α-synuclein aggregation by modulating neuroinflammation and matrix metalloproteinase-3 expression in the subacute MPTP/P mouse model of Parkinson's disease. Biomed. Pharmacother. 130, 110576. https://doi.org/10.1016/j.biopha.2020.110576
  13. Liu, C. Y., Wang, X., Liu, C. and Zhang, H. L. (2019) Pharmacological targeting of microglial activation: new therapeutic approach. Front. Cell. Neurosci. 13, 514. https://doi.org/10.3389/fncel.2019.00514
  14. Martinez, E. M., Young, A. L., Patankar, Y. R., Berwin, B. L., Wang, L., von Herrmann, K. M., Weier, J. M. and Havrda, M. C. (2017) Editor's highlight: Nlrp3 is required for inflammatory changes and nigral cell loss resulting from chronic intragastric rotenone exposure in mice. Toxicol. Sci. 159, 64-75. https://doi.org/10.1093/toxsci/kfx117
  15. Martinon, F., Burns, K. and Tschopp, J. (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417-426. https://doi.org/10.1016/S1097-2765(02)00599-3
  16. Mogi, M., Harada, M., Narabayashi, H., Inagaki, H., Minami, M. and Nagatsu, T. (1996) Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci. Lett. 211, 13-16. https://doi.org/10.1016/0304-3940(96)12706-3
  17. Mogi, M., Togari, A., Kondo, T., Mizuno, Y., Komure, O., Kuno, S., Ichinose, H. and Nagatsu, T. (2000) Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J. Neural Transm. (Vienna) 107, 335-341. https://doi.org/10.1007/s007020050028
  18. Neher, J. J. and Cunningham, C. (2019) Priming microglia for innate immune memory in the brain. Trends Immunol. 40, 358-374. https://doi.org/10.1016/j.it.2019.02.001
  19. Norden, D. M., Muccigrosso, M. M. and Godbout, J. P. (2015) Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology 96, 29-41. https://doi.org/10.1016/j.neuropharm.2014.10.028
  20. Pajares, M., Rojo, A. I., Manda, G., Bosca, L. and Cuadrado, A. (2020) Inflammation in Parkinson's disease: mechanisms and therapeutic implications. Cells 9, 1687. https://doi.org/10.3390/cells9071687
  21. Perry, V. H. and Holmes, C. (2014) Microglial priming in neurodegenerative disease. Nat. Rev. Neurol. 10, 217-224. https://doi.org/10.1038/nrneurol.2014.38
  22. Perry, V. H. and Teeling, J. (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin. Immunopathol. 35, 601-612. https://doi.org/10.1007/s00281-013-0382-8
  23. Pott Godoy, M. C., Tarelli, R., Ferrari, C. C., Sarchi, M. I. and Pitossi, F. J. (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson's disease. Brain 131, 1880-1894. https://doi.org/10.1093/brain/awn101
  24. Przedborski, S. (2017) The two-century journey of Parkinson disease research. Nat. Rev. Neurosci. 18, 251-259. https://doi.org/10.1038/nrn.2017.25
  25. Seok, J. K., Kang, H. C., Cho, Y. Y., Lee, J. S. and Lee, J. Y. (2021) Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Arch. Pharm. Res. 44, 16-35. https://doi.org/10.1007/s12272-021-01307-9
  26. Swanson, K. V., Deng, M. and Ting, J. P. (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477-489. https://doi.org/10.1038/s41577-019-0165-0
  27. Wang, W., Nguyen, L. T., Burlak, C., Chegini, F., Guo, F., Chataway, T., Ju, S., Fisher, O. S., Miller, D. W., Datta, D, Wu, F., Wu, C. X., Landeru, A., Wells, J. A., Cookson, M. R., Boxer, M. B., Thomas, C. J., Gai, W. P., Ringe, D., Petsko, G. A. and Hoang, Q. Q. (2016) Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein α-synuclein. Proc. Natl. Acad. Sci. U.S.A. 113, 9587-9592. https://doi.org/10.1073/pnas.1610099113
  28. Wen, A. Y., Sakamoto, K. M. and Miller, L. S. (2010) The role of the transcription factor CREB in immune function. J. Immunol. 185, 6413-6419. https://doi.org/10.4049/jimmunol.1001829
  29. Wilson, L. S. and Brandon, N. J. (2015) Emerging biology of PDE10A. Curr. Pharm. Des. 21, 378-388. https://doi.org/10.2174/1381612820666140826114744
  30. Yan, Y., Jiang, W., Liu, L., Wang, X., Ding, C., Tian, Z. and Zhou, R. (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62-73. https://doi.org/10.1016/j.cell.2014.11.047
  31. Zagorska, A., Partyka, A., Bucki, A., Gawalskax, A., Czopek, A. and Pawlowski, M. (2018) Phosphodiesterase 10 inhibitors - novel perspectives for psychiatric and neurodegenerative drug discovery. Curr. Med. Chem. 25, 3455-3481. https://doi.org/10.2174/0929867325666180309110629
  32. Zhu, W., Liu, S., Zhao, J., Liu, S., Jiang, S., Li, B., Yang, H., Fan, C. and Cui, W. (2014) Highly flexible and rapidly degradable papaverineloaded electrospun fibrous membranes for preventing vasospasm and repairing vascular tissue. Acta Biomater. 10, 3018-3028. https://doi.org/10.1016/j.actbio.2014.03.023

Cited by

  1. Mining Anti-Inflammation Molecules From Nippostrongylus brasiliensis-Derived Products Through the Metabolomics Approach vol.11, 2021, https://doi.org/10.3389/fcimb.2021.781132