DOI QR코드

DOI QR Code

Barringtonia augusta Kurz 추출물의 항염증 및 항산화 효능 평가

Anti-inflammatory and antioxidant effects of Barringtonia augusta Kurz extract

  • 류수호 (경북대학교 식품공학부 식품응용공학전공) ;
  • 김민정 (경북대학교 식품공학부 식품응용공학전공) ;
  • ;
  • 정성근 (경북대학교 식품공학부 식품응용공학전공)
  • Ryu, Soo Ho (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Kim, Min Jeong (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Bach, Tran The (Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST)) ;
  • Jung, Sung Keun (School of Food Science and Biotechnology, Kyungpook National University)
  • 투고 : 2020.12.19
  • 심사 : 2021.02.09
  • 발행 : 2021.04.30

초록

본 연구에서는 LPS로 유도된 RAW 264.7 대식세포에서 Barringtonia augusta Kurz 추출물의 항염증, 항산화 효능을 확인하였다. BKE는 LPS에 의한 NO와 ROS의 생성을 유의적으로 억제하였고, iNOS 발현 또한 억제하였다. 특히 IKK 매개 NF-κB pathway에서, IKK의 인산화 억제를 통하여, IκBα의 감소와 NF-κB의 인산화를 억제하여, NF-κB의 세포질에서 핵으로의 이동을 유의적으로 억제하였다. 이 논문은 BKE가 NO와 ROS의 생성과 iNOS의 발현을 IKK매개 NF-κB 인산화 억제를 통해 항염증 및 항산화 효과를 나타냄을 보여주었다. 이러한 결과를 바탕으로 BKE는 항염증, 항산화 기능성 식품 또는 의약품 소재로써 활용가치가 높을 것으로 기대된다.

Barringtonia augusta Kurz is a species of the genus Barringtonia. Although several studies have analyzed the biological activity of B. racemosa Roxb and B. acutangula, the anti-inflammatory and antioxidant effects of B. augusta extract (BKE) remain unclear. Therefore, in this study, we investigated the anti-inflammatory and antioxidant effects of BKE using lipopolysaccharide (LPS) and RAW 264.7. BKE suppressed LPS-induced nitric oxide (NO) and inducible NO synthase expression without affecting RAW 264.7 cell viability. Additionally, BKE showed 2,2-Diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging capacities and inhibited LPS-induced reactive oxygen species production in RAW 264.7 cells. BKE also suppressed LPS-induced phosphorylation of IκB kinase and nuclear factor kappa-B (NF-κB) and p65 translocation from the cytosol to the nucleus in RAW 264.7 cells. These results suggest that BKE is a possible novel material that exerts beneficial antioxidant and anti-inflammatory effects through the inhibition of NF-κB signaling pathways.

키워드

참고문헌

  1. Ali AM, Muse R, Mohd NB. Anti-oxidant and anti-inflammatory activities of leaves of Barringtonia racemosa. J. Med. Plants Res. 1: 95-102 (2007)
  2. Brynskov J, Nielsen OH, Ahnfelt-Ronne I, Bendtzen K. Cytokines (immunoinflammatory hormones) and their natural regulation in inflammatory bowel disease (Crohn's disease and ulcerative colitis): A review. Dig. Dis. 12: 290-304 (1994) https://doi.org/10.1159/000171464
  3. Boveris A, Alvarez S, Navarro A. The role of mitochondrial nitric oxide synthase in inflammation and septic shock. Free Radic. Biol. Med. 33: 1186-1193 (2002) https://doi.org/10.1016/S0891-5849(02)01009-2
  4. Chi DS, Qui M, Krishnaswamy G, Li C, Stone W. Regulation of nitric oxide production from macrophages by lipopolysaccharide and catecholamines. Nitric Oxide. 8:127-132 (2003) https://doi.org/10.1016/S1089-8603(02)00148-9
  5. Dobrovolskaia MA, Vogel SN. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes. Infect. 4: 903-914 (2002) https://doi.org/10.1016/S1286-4579(02)01613-1
  6. Forman HJ, Torress M. Redox signaling in macrophages. Mol. Aspects Med. 22: 189-216 (2001) https://doi.org/10.1016/S0098-2997(01)00010-3
  7. Gando S, Kameue T, Nanzaki S, Nakanishi Y. Disseminated intravascular coagulation is a frequent complication of systemic inflammatory response syndrome. Thromb. Haemost. 75: 224-228 (1996) https://doi.org/10.1055/s-0038-1650248
  8. Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem. Pharmacol 72: 1493-1505 (2006) https://doi.org/10.1016/j.bcp.2006.04.011
  9. Khatua S, Ghosh S, Acharya K. Simplified Methods for Microtiter Based Analysis of In Vitro Antioxidant Activity. Asian J. Pharm. 11: S327-S335 (2017)
  10. Kim JG, Kim MJ, Lee JS, Sydara K, Lee S, Byun S, Jung SK. Smilax guianensis Vitman Extract Prevents LPS-Induced Inflammation by Inhibiting the NF-κB Pathway in RAW 264.7 Cells. J. Microbiol Biotechnol. 30: 822-829 (2020) https://doi.org/10.4014/jmb.1911.11042
  11. Kim MJ, Kim JG, Sydara KM, Lee SW, Jung SK. Croton hirtus L'Her Extract Prevents Inflammation in RAW264.7 Macrophages Via Inhibition of NF-κB Signaling Pathway. J. Microbiol. Biotechnol. 30: 490-496 (2020) https://doi.org/10.4014/jmb.1908.08045
  12. Lee JI, Burckart GJ. Nuclear Factor Kappa B: Important Transcription Factor and Therapeutic Target. J. Clin Pharmacol. 38: 981-993 (1998) https://doi.org/10.1177/009127009803801101
  13. Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL, Hong JS. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann. NY Acad Sci. 962: 318-331 (2002) https://doi.org/10.1111/j.1749-6632.2002.tb04077.x
  14. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 4: 118-126 (2010) https://doi.org/10.4103/0973-7847.70902
  15. Libby P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32: 2045-2051 (2012) https://doi.org/10.1161/ATVBAHA.108.179705
  16. Lee SH, Kwak CH, Lee SK, Ha SH, Park J, Chung TW, Ha KT, Suh SJ, Chang YC, Chang HW, Lee YC, Kang BS, Magae J, KIm CH. Anti-Inflammatory Effect of Ascochlorin in LPS-Stimulated RAW 264.7 Macrophage Cells Is Accompanied With the Down-Regulation of iNOS, COX-2 and Proinflammatory Cytokines Through NF-κB, ERK1/2, and p38 Signaling Pathway. J. Cell. Biochem. 117: 978-987 (2016) https://doi.org/10.1002/jcb.25383
  17. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct. Target. 2:17023 (2017) https://doi.org/10.1038/sigtrans.2017.23
  18. Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 140: 771-776 (2010) https://doi.org/10.1016/j.cell.2010.03.006
  19. Patil KR, Patil CR. Anti-inflammatory activity of bartogenic acid containing fraction of fruits of Barringtonia racemosa Roxb. in acute and chronic animal models of inflammation. J. Tradit. Complement. Med. 7: 86-93 (2016) https://doi.org/10.1016/j.jtcme.2016.02.001
  20. Qin L, Block ML, Liu Y, Bienstock RJ, Pei Z, Zhang W, Wu X, Wilson B, Burka T, Hong JS. Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. FASEB J. 19: 550-557 (2005) https://doi.org/10.1096/fj.04-2857com
  21. Rahman MM, Polfreman D, MacGeachan J, Gray AI. Antimicrobial activities of Barringtonia acutangula. Phytother Res. 19: 543-545 (2005) https://doi.org/10.1002/ptr.1341
  22. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 24:981-990 (2012) https://doi.org/10.1016/j.cellsig.2012.01.008
  23. Sartor RB. Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases. Am. J. Gastroenterol. 92: 5S-11S (1997)
  24. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 15: 252-259 (2007) https://doi.org/10.1007/s10787-007-0013-x
  25. So BR, Bach TT, Paik JH, Jung SK. Kmeria duperreana (Pierre) Dandy Extract Suppresses LPS-Induced iNOS and NO via Regulation of NF-κB Pathways and p38 in Murin Macrophage RAW 264.7 Cells. Prev Nutr Food Sci. 25: 166-172 (2020) https://doi.org/10.3746/pnf.2020.25.2.166
  26. Tripathi P, Tripathi P, Kashyap L, Singh V. The role of nitric oxide in inflammatory reactions. FEMS Immunol. Med. Microbiol. 51: 443-452 (2007) https://doi.org/10.1111/j.1574-695X.2007.00329.x
  27. Viatour P, Merville MP, Bours V, Chariot A. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem. Sci. 30: 43-52 (2005) https://doi.org/10.1016/j.tibs.2004.11.009
  28. Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 264: 182-203 (2015) https://doi.org/10.1111/imr.12266