DOI QR코드

DOI QR Code

Enzymatic Characterization and Comparison of Two Steroid Hydroxylases CYP154C3-1 and CYP154C3-2 from Streptomyces Species

  • Subedi, Pradeep (Department of Life Science and Biochemical Engineering, Sunmoon University) ;
  • Kim, Ki-Hwa (Department of Life Science and Biochemical Engineering, Sunmoon University) ;
  • Hong, Young-Soo (Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Joo-Ho (Genome-Based BioIT Convergence Institute) ;
  • Oh, Tae-Jin (Department of Life Science and Biochemical Engineering, Sunmoon University)
  • Received : 2020.10.11
  • Accepted : 2020.12.31
  • Published : 2021.03.28

Abstract

Bacterial cytochrome P450 (CYP) enzymes are responsible for the hydroxylation of diverse endogenous substances with a heme molecule used as a cofactor. This study characterized two CYP154C3 proteins from Streptomyces sp. W2061 (CYP154C3-1) and Streptomyces sp. KCCM40643 (CYP154C3-2). The enzymatic activity assays of both CYPs conducted using heterologous redox partners' putidaredoxin and putidaredoxin reductase showed substrate flexibility with different steroids and exhibited interesting product formation patterns. The enzymatic characterization revealed good activity over a pH range of 7.0 to 7.8 and the optimal temperature range for activity was 30 to 37℃. The major product was the C16-hydroxylated product and the kinetic profiles and patterns of the generated hydroxylated products differed between the two enzymes. Both enzymes showed a higher affinity toward progesterone, with CYP154C3-1 demonstrating slightly higher activity than CYP154C3-2 for most of the substrates. Oxidizing agents (diacetoxyiodo) benzene (PIDA) and hydrogen peroxide (H2O2) were also utilized to actively support the redox reactions, with optimum conversion achieved at concentrations of 3 mM and 65 mM, respectively. The oxidizing agents affected the product distribution, influencing the type and selectivity of the CYP-catalyzed reaction. Additionally, CYP154C3s also catalyzed the C-C bond cleavage of steroids. Therefore, CYP154C3s may be a good candidate for the production of modified steroids for various biological uses.

Keywords

References

  1. Guengerich FP. 2002. Cytochrome P450 enzymes in the generation of commercial products. Nat. Rev. Drug Discov. 1: 359-366. https://doi.org/10.1038/nrd792
  2. Girvan HM, Munro AW. 2016. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. Curr. Opin. Chem. Biol. 31: 136-145. https://doi.org/10.1016/j.cbpa.2016.02.018
  3. Isin EM, Guengerich FP. 2007. Complex reactions catalyzed by cytochrome P450 enzymes. Biochim. Biophys. Acta 1770: 314-329. https://doi.org/10.1016/j.bbagen.2006.07.003
  4. Urlacher V, Schmid RD. 2002 Biotransformations using prokaryotic P450 monooxygenases. Curr. Opin. Biotechnol. 13: 557-564. https://doi.org/10.1016/S0958-1669(02)00357-9
  5. Ortiz de Montellano PR. 2010. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110: 932-948. https://doi.org/10.1021/cr9002193
  6. Ortiz de Montellano PR. 2015. Cytochrome P450: Structure, mechanism, and biochemistry. fourth edition. Springer Science & Business Media.
  7. Modi AR, Dawson JH. 2015. Oxidizing intermediates in P450 catalysis: a case for multiple oxidants. Adv. Exp. Med. Biol. 851: 63-81. https://doi.org/10.1007/978-3-319-16009-2_2
  8. Munro AW, McLean KJ, Grant JL, Makris TM. 2018. Structure and function of the cytochrome P450 peroxygenase enzymes. Biochem. Soc. Trans. 46: 183-196. https://doi.org/10.1042/BST20170218
  9. Dangi B, Park H, Oh TJ. 2018. Effects of alternative redox partners and oxidizing agents on CYP154C8 catalytic activity and product distribution. Chembiochem 19: 2273-2282. https://doi.org/10.1002/cbic.201800284
  10. Strohmaier SJ, Baek JM, De Voss JJ, Jurva U, Andersson S, Gillam EMJ. 2020. An inexpensive, efficient alternative to NADPH to support catalysis by thermostable Cytochrome P450 enzymes. ChemCatChem 12: 1750-1761. https://doi.org/10.1002/cctc.201902235
  11. Sultana N. 2018. Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation. Steroids 136: 76-92. https://doi.org/10.1016/j.steroids.2018.01.007
  12. Straub RH, Cutolo M. 2016. Glucocorticoids and chronic inflammation. Rheumatol. 55: ii6-ii14. https://doi.org/10.1093/rheumatology/kew348
  13. Benagiano M, Bianchi P, D'Elios MM, Brosens I, Benagiano G. 2019. Autoimmune diseases: Role of steroid hormones. Best Pract. Res. Clin. Obstet. Gynaecol. 60: 24-34. https://doi.org/10.1016/j.bpobgyn.2019.03.001
  14. Clark AS, Henderson LP. 2003. Behavioral and physiological responses to anabolic-androgenic steroids. Neurosci. Biobehav. Rev. 27: 413-436. https://doi.org/10.1016/S0149-7634(03)00064-2
  15. Donova MV, Egorova OV. 2012. Microbial steroid transformations: Current state and prospects. Appl. Microbiol. Biotechnol. 96: 1423-1447. https://doi.org/10.1007/s00253-012-4078-0
  16. Carballeira JD, Quezada MA, Hoyos P, Simeo Y, Hernaiz MJ, Alcantara AR, et al. 2009. Microbial cells as catalysts for stereoselective red-ox reactions. Biotechnol. Adv. 27: 686-714. https://doi.org/10.1016/j.biotechadv.2009.05.001
  17. Dangi B, Kim KH, Kang SH, Oh TJ. 2018. Tracking down a new steroid-hydroxylating promiscuous Cytochrome P450: CYP154C8 from Streptomyces sp. W2233-SM. Chembiochem 19: 1066-1077. https://doi.org/10.1002/cbic.201800018
  18. Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS. 2003. Microbial conversion of steroid compounds: Recent developments. Enzyme Microb. Technol. 32: 688-705. https://doi.org/10.1016/S0141-0229(03)00029-2
  19. Shah SAA, Sultan S, Adnan HS. 2013. A whole-cell biocatalysis application of steroidal drugs. Orient. J. Chem. 29: 389-403. https://doi.org/10.13005/ojc/290201
  20. Donova MV. 2007. Transformation of steroids by actinobacteria: A review. Appl. Biochem. 43: 5-18.
  21. Hannemann F, Bichet A, Ewen KM, Bernhardt R. 2007. Cytochrome P450 systems-biological variations of electron transport chains. Biochim. Biophys. Acta 1770: 330-344. https://doi.org/10.1016/j.bbagen.2006.07.017
  22. Lee GY, Kim DH, Kim D, Ahn T, Yun CH. 2015. Functional characterization of steroid hydroxylase CYP106A1 derived from Bacillus megaterium. Arch. Pharm. Res. 38: 98-107. https://doi.org/10.1007/s12272-014-0366-9
  23. Jozwik IK, Kiss FM, Gricman L, Abdulmughni A, Brill E, Zapp J, et al. 2016. Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium. FEBS J. 22: 4128-4148.
  24. Makino T, Katsuyama Y, Otomatsu T, Misawa N, Ohnishi Y. 2014. Regio- and stereospecific hydroxylation of various steroids at the 16α position of the D ring by the Streptomyces griseus cytochrome P450 CYP154C3. Appl. Environ. Microbiol. 80: 1371-1379. https://doi.org/10.1128/AEM.03504-13
  25. Dangi B, Lee CW, Kim KH, Park SH, Yu EJ, Jeong CS, et al. 2019. Characterization of two steroid hydroxylases from different Streptomyces spp. and their ligand-bound and -unbound crystal structures. FEBS J. 286: 1683-1699. https://doi.org/10.1111/febs.14729
  26. Bracco P, Janssen DB, Schallmey A. 2013. Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450. Microb. Cell Fact. 12: 95. https://doi.org/10.1186/1475-2859-12-95
  27. Khatri Y, Ringle M, Lisurek M, VonKries JP, Zapp J, Bernhardt R. 2016. Substrate hunting for the Myxobacterial CYP260A1 revealed new 1α-hydroxylated products from C-19 steroids. Chembiochem 17: 90-101. https://doi.org/10.1002/cbic.201500420
  28. Nicholas KB, Nicholas HB, Deerfield D, Gauch H. 1997. Genedoc: a tool for editing and annotating multiple sequence alignments. Computer Science, Biology.
  29. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  30. Zuckerkandl E, Pauling L. 1965. Evolutionary divergence and convergence in proteins. In: Evolving Genes and Proteins. Vol. 97-166.
  31. Bhattarai S, Liou K, Oh TJ. 2013. Hydroxylation of long chain fatty acids by CYP147F1, a new cytochrome P450 subfamily protein from Streptomyces peucetius. Arch. Biochem. Biophys. 539: 63-69. https://doi.org/10.1016/j.abb.2013.09.008
  32. Omura T, Sato R. 1964. The carbon monoxide-binding pigment of liver microsomes. i. evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378. https://doi.org/10.1016/S0021-9258(20)82244-3
  33. Guengerich FP, Martin MV, Sohl CD, Cheng Q. 2009. Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat. Protoc. 4: 1245-1251. https://doi.org/10.1038/nprot.2009.121
  34. Roome PW, Philley JC, Peterson JA. 1983. Purification and properties of putidaredoxin reductase. J. Biol. Chem. 258: 2593-2598. https://doi.org/10.1016/S0021-9258(18)32967-3
  35. Williams JW, Morrison JF. 1979. The kinetics of reversible tight-binding inhibition. Methods Enzymol. 63: 437-467. https://doi.org/10.1016/0076-6879(79)63019-7
  36. Dangi B, Oh TJ. 2019. Bacterial CYP154C8 catalyzes carbon-carbon bond cleavage in steroids. FEBS Lett. 593: 67-79. https://doi.org/10.1002/1873-3468.13297
  37. Poulos TL. 2014. Heme enzyme structure and function. Chem. Rev. 114: 3919-3962. https://doi.org/10.1021/cr400415k
  38. Mak PJ, Denisov IG. 2018. Spectroscopic studies of the cytochrome P450 reaction mechanisms. Biochim. Biophys. Acta Proteins Proteom. 1866: 178-204. https://doi.org/10.1016/j.bbapap.2017.06.021
  39. Jung C, Ristau O, Rein H. 1991. The high-spin/low-spin equilibrium in cytochrome P-450 - A new method for determination of the high-spin content. Biochim. Biophys. Acta Protein Struct. Mol. 1076: 130-136.
  40. Denisov IG, Makris TM, Sligar SG, Schlichting I. 2005. Structure and chemistry of cytochrome P450. Chem. Rev. 105: 2253-2278. https://doi.org/10.1021/cr0307143
  41. Herzog K, Bracco P, Onoda A, Hayashi T, Hoffmann K, Schallmey A. 2014. Enzyme-substrate complex structures of CYP154C5 shed light on its mode of highly selective steroid hydroxylation. Acta Crystallogr. Sect. D Biol. Crystallogr. 70: 2875-2889. https://doi.org/10.1107/S1399004714019129
  42. Hlavica P, Schulze J, Lewis DFV. 2003. Functional interaction of cytochrome P450 with its redox partners: A critical assessment and update of the topology of predicted contact regions. J. Inorg. Biochem. 96: 279-297. https://doi.org/10.1016/S0162-0134(03)00152-1
  43. Nadler SG, Strobel HW. 1988. Role of electrostatic interactions in the reaction of NADPH-cytochrome P-450 reductase with cytochromes P-450. Arch. Biochem. Biophys. 261: 418-429. https://doi.org/10.1016/0003-9861(88)90358-X
  44. Yun CH, Song M, Ahn T, Kim H. 1996. Conformational change of cytochrome P450 1A2 induced by sodium chloride. J. Biol. Chem. 271: 31312-31316. https://doi.org/10.1074/jbc.271.49.31312
  45. Davydov DR, Kariakin AA, Petushkova NA, Peterson JA. 2000. Association of cytochromes P450 with their reductases: opposite sign of the electrostatic interactions in P450BM-3 as compared with the microsomal 2B4 system. Biochemistry 39: 6489-6497. https://doi.org/10.1021/bi992936u
  46. Hayashi T, Harada K, Sakurai K, Shimada H, Hirota S. 2009. A role of the heme-7-propionate side chain in cytochrome P450cam as a gate for regulating the access of water molecules to the substrate-binding site. J. Am. Chem. Soc. 131: 1398-1400. https://doi.org/10.1021/ja807420k
  47. Thevis M, Schanzer W. 2005. Mass spectrometric analysis of androstan-17β-ol-3-one and androstadiene-17β-ol-3-one isomers. J. Am. Soc. Mass Spectrom. 16: 1660-1669. https://doi.org/10.1016/j.jasms.2005.06.007
  48. Li H, Sheng LP, Wang B, Yang ZL, Liu SY. 2015. An optimized method for corticosterone analysis in mouse plasma by ultra-performance liquid chromatography-full-scan high-resolution accurate mass spectrometry. J. Chromatogr. Sci. 53: 285-294. https://doi.org/10.1093/chromsci/bmu056
  49. Yamazaki H, Ueng YF, Shimada T, Guengerich FP. 1995. Roles of divalent metal ions in oxidations catalyzed by recombinant Cytochrome P450 3A4 and replacement of NADPH-Cytochrome P450 reductase with other flavoproteins, ferredoxin, and oxygen surrogates. Biochemistry 34: 8380-8389. https://doi.org/10.1021/bi00026a02
  50. Gustafsson JA, Bergman J. 1976. Iodine- and chlorine-containing oxidation agents as hydroxylating catalysts in cytochrome P-450-dependent fatty acid hydroxylation reactions in rat liver microsomes. FEBS Lett. 70: 276-289. https://doi.org/10.1016/0014-5793(76)80774-0
  51. Dornevil K, Davis I, Fielding AJ, Terrell JR, Ma L, Liu A. 2017. Cross-linking of dicyclotyrosine by the cytochrome P450 enzyme CYP121 from Mycobacterium tuberculosis proceeds through a catalytic shunt pathway. J. Biol. Chem. 292: 13645-13657. https://doi.org/10.1074/jbc.M117.794099
  52. Gelb MH, Heimbrook DC, Malkonen P, Sligar SG. 1982. Stereochemistry and deuterium isotope effects in camphor hydroxylation by the Cytochrome P450cam monoxygenase system. Biochemistry 21: 370-377. https://doi.org/10.1021/bi00531a026
  53. Berg A, Ingelman-Sundberg M, Gustafsson JA. 1979. Purification and characterization of cytochrome P-450meg. J. Biol. Chem. 254: 5264-5271. https://doi.org/10.1016/S0021-9258(18)50589-5
  54. Hrycay EG, Bandiera SM. 2012. The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Arch. Biochem. Biophys. 522: 71-89. https://doi.org/10.1016/j.abb.2012.01.003