• Received : 2021.02.03
  • Accepted : 2021.03.30
  • Published : 2021.04.30


Observations of line of sight (LOS) Doppler velocity and non-thermal line width in the off-limb solar corona are often used for investigating the Alfvén wave signatures in the corona. In this study, we compare LOS Doppler velocities and non-thermal line widths obtained simultaneously from two different instruments, Coronal Multichannel Polarimeter (CoMP) and Hinode/EUV Imaging Spectrometer (EIS), on various off-limb coronal regions: flaring and quiescent active regions, equatorial quiet region, and polar prominence and plume regions observed in 2012-2014. CoMP provides the polarization at the Fe xiii 10747 Å coronal forbidden lines which allows their spectral line intensity, LOS Doppler velocity, and line width to be measured with a low spectral resolution of 1.2 Å in 2-D off limb corona between 1.05 and 1.40 RSun, while Hinode/EIS gives us the EUV spectral information with a high spectral resolution (0.025 Å) in a limited field of view raster scan. In order to compare them, we make pseudo raster scan CoMP maps using information of each EIS scan slit time and position. We compare the CoMP and EIS spectroscopic maps by visual inspection, and examine their pixel to pixel correlations and percentages of pixel numbers satisfying the condition that the differences between CoMP and EIS spectroscopic quantities are within the EIS measurement accuracy: ±3 km s-1 for LOS Doppler velocity and ±9 km s-1 for non-thermal width. The main results are summarized as follows. By comparing CoMP and EIS Doppler velocity distributions, we find that they are consistent with each other overall in the active regions and equatorial quiet region (0.25 ≤ CC ≤ 0.7), while they are partially similar to each other in the overlying loops of prominences and near the bottom of the polar plume (0.02 ≤ CC ≤ 0.18). CoMP Doppler velocities are consistent with the EIS ones within the EIS measurement accuracy in most regions (≥ 87% of pixels) except for the polar region (45% of pixels). We find that CoMP and EIS non-thermal width distributions are similar overall in the active regions (0.06 ≤ CC ≤ 0.61), while they seem to be different in the others (-0.1 ≤ CC ≤ 0.00). CoMP non-thermal widths are similar to EIS ones within the EIS measurement accuracy in a quiescent active region (79% of pixels), while they do not match in the other regions (≤ 61% of pixels); the CoMP observations tend to underestimate the widths by about 20% to 40% compared to the EIS ones. Our results demonstrate that CoMP observations can provide reliable 2-D LOS Doppler velocity distributions on active regions and might provide their non-thermal width distributions.



  1. Banerjee, D., Perez-Suarez, D., & Doyle, J. G., 2009, Signatures of Alfven Waves in the Polar Coronal Holes as Seen by EIS/Hinode, A&A, 501, L15.
  2. Banerjee, D., Teriaca, L., Doyle, J. G., et al. 1998, Broadening of Si viii Lines Observed in the Solar Polar Coronal Holes, A&A, 339, 208.
  3. Bemporad, A., & Abbo, L. 2012, Spectroscopic Signature of Alfven Waves Damping in a Polar Coronal Hole up to 0.4 Solar Radii, ApJ, 751, 110.
  4. Brooks, D. H., & Warren, H. P. 2016, Measurements of Non-Thermal Line Widths in Solar Active Regions, ApJ, 820, 63.
  5. Chandran, B. D. G., & Hollweg, J. V., 2009, Alfven Wave Reflection and Turbulent Heating in the Solar Wind from 1 Solar Radius to 1 AU: An Analytical Treatment, ApJ, 707, 1659.
  6. Chandran, B. D. G., Dennis, T. J., Quataert, E., & Bale, S. D., 2011, Incorpoating Kinetic Physics into a Two-Fluid Solar-Wind Model with Temperature Anisotropy and Low-Frequency Alfven-Wave Turbulence, ApJ, 743, 197.
  7. Culhane, J. L., Harra, L. K., James, A. M., et al. 2007, The EUV Imaging Spectrometer for Hinode, Sol. Phys., 243, 19.
  8. Dudik, J., Zanna, G. D., Rybak, J., et al. 2021, Electron Densities in the Solar Corona Measured Simultaneously in the Extreme Ultraviolet and Infrared, ApJ, 906, 118.
  9. Goossense, M., Terradas, J., Andries, J., et al. 2009, On the Nature of Kink MHD Waves in Magnetic Flux Tubes, A&A, 503, 213.
  10. Gupta, G. R. 2017, Spectroscopic Evidence of Alfven Wave Damping in the Off-limb Solar Corona, ApJ, 836, 4.
  11. Hahn M., Landi, E., & Savin, D. W., 2012, Evidence of Wave Damping at Low Heights in a Polar Coronal Hole, ApJ, 753, 36
  12. Hahn, M., & Savin, D. W. 2014, Evidence for Wave Heating of the Quiet-Sun Corona, ApJ, 795, 111.
  13. Kosugi, T., Matsuzaki, K., Sakao, T., etal. 2007, The Hinode (Solar-B) Mission: An Overview, Sol. Phys., 243, 3.
  14. Lee, K. -S., Imada, S., Moon, Y.-J., et al., 2014, Spectroscopic Study of a Dark Lane and a Cool Loop in a Solar Limb Active Region by Hinode/EIS, ApJ, 780, 177.
  15. Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 275, 17.
  16. Liu, J., Mcintosh, S. W., Moortel, I. D., et al. 2014, Statistical Evidence for the Existence of Alfvenic Turbulence in Solar Coronal Loops , ApJ, 797, 7.
  17. Liu, J., Mcintosh, S. W., Moortel, I. D., et al. 2015, On the Parallel and Perpendicular Propagating Motions Visible in Polar Plumes: an Incubator for (Fast) Solar Wind Acceleration?, ApJ, 806, 273
  18. McIntosh, S. W., de Pontieu, B., Carlsson, M., et al. 2011, Alfvenic Waves with Sufficient Energy to Power the Quiet Solar Corona and Fast solar wind, Nature, 475, 477.
  19. Moortel, I.D., Mcintosh, S. W., Threlfall, J. et al. 2014, Potential Evidence for the Onset of Alfvenic Turbulence in Trans-Equatorial Coronal Loops, ApJL, 782, L34.
  20. Morton, R.J., Tomczyk, S., & Pinto, R. 2015, Investigating Alfvenic Wave Propagation in Coronal Open-Field Regions, Nat. Commun., 6, 7813.
  21. Morton, R. J., Tomczyk, S., & Pinto, R. F. 2016, A Global View of Velocity Flutuations in the Corona Below 1.3 Rsun with CoMP, ApJ, 828, 89.
  22. Olsen, S. I. 1993, Estimation of Noise in Images: An Evaluation, CVGIP Graphical Models Image Process., 55, 319
  23. Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, The Solar Dynamics Observatory (SDO), Sol. Phys., 275, 3
  24. Threlfall, J., Moortel, I. D., McIntosh, S. W. et al. 2013, First Comparison of Wave Observations from CoMP and AIA/SDO, A&A, 556, A124.
  25. Tian, H., Tomczyk, S., Mcintosh, S. W., et al., 2013, Observations of Coronal Mass Ejections with the Coronal Multichannel Polarimeter, Sol. Phys., 288, 637.
  26. Tomczyk, S., Card, G. L., Darnell, T., et al. 2008, An Instrument to Measure Coronal Emission Line Polarization, Sol. Phys., 247, 411.
  27. Tomczyk, S., McIntosh, S. W., Keil, S. L., et al. 2007, Alfven Waves in the Solar Corona, Science, 317, 1192.
  28. Tomczyk, S. & McIntosh, S. W. 2009, Time-Distance Seismology of the Solar Corona with CoMP, ApJ, 697, 1384.
  29. Van Doorsselaere, T., Nakariakov, V. M., & Verwichte, E. 2008, Detection of Waves in the Solar Corona: Kink or Alfven?, ApJ, 676, L73.
  30. Wilhelm, K., Dwivedi, B. N., & Teriaca, L., 2004, On the Widths of the Mg x Lines near 60 nm in the Corona, A&A, 415, 1133.
  31. Young, P. 2011, EIS Software Note No. 7
  32. Zanna, G. D., Gupta, G. R., & Mason, H. E. 2019, Exploring the Damping of Alfven Waves along a Long Off-Limb Coronal Loop, up to 1.4 Rsun, A&A, 631, A163.