DOI QR코드

DOI QR Code

KINEMATIC OSCILLATIONS OF POST-CME BLOBS DETECTED BY K-COR ON 2017 SEPTEMBER 10

  • Lee, Jae-Ok (Korea Astronomy and Space Science Institute) ;
  • Cho, Kyung-Suk (Korea Astronomy and Space Science Institute) ;
  • Nakariakov, Valery M. (School of Space Research, Kyung Hee University) ;
  • Lee, Harim (School of Space Research, Kyung Hee University) ;
  • Kim, Rok-Soon (Korea Astronomy and Space Science Institute) ;
  • Jang, Soojeong (Korea Astronomy and Space Science Institute) ;
  • Yang, Heesu (Korea Astronomy and Space Science Institute) ;
  • Kim, Sujin (Korea Astronomy and Space Science Institute) ;
  • Kim, Yeon-Han (Korea Astronomy and Space Science Institute)
  • Received : 2020.12.09
  • Accepted : 2021.04.08
  • Published : 2021.04.30

Abstract

We investigate 20 post-coronal mass ejection (CME) blobs formed in the post-CME current sheet (CS) that were observed by K-Cor on 2017 September 10. By visual inspection of the trajectories and projected speed variations of each blob, we find that all blobs except one show irregular "zigzag" trajectories resembling transverse oscillatory motions along the CS, and have at least one oscillatory pattern in their instantaneous radial speeds. Their oscillation periods are ranging from 30 to 91 s and their speed amplitudes from 128 to 902 km s-1. Among 19 blobs, 10 blobs have experienced at least two cycles of radial speed oscillations with different speed amplitudes and periods, while 9 blobs undergo one oscillation cycle. To examine whether or not the apparent speed oscillations can be explained by vortex shedding, we estimate the quantitative parameter of vortex shedding, the Strouhal number, by using the observed lateral widths, linear speeds, and oscillation periods of the blobs. We then compare our estimates with theoretical and experimental results from MHD simulations and fluid dynamic experiments. We find that the observed Strouhal numbers range from 0.2 to 2.1, consistent with those (0.15-3.0) from fluid dynamic experiments of bluff spheres, while they are higher than those (0.15-0.25) from MHD simulations of cylindrical shapes. We thus find that blobs formed in a post-CME CS undergo kinematic oscillations caused by fluid dynamic vortex shedding. The vortex shedding is driven by the interaction of the outward-moving blob having a bluff spherical shape with the background plasma in the post-CME CS.

Keywords

References

  1. Brueckner, G. E., Howard, R. A., Koomen, M. J., et al. 1995, The Large Angle Spectroscopic Coronagraph (LASCO), Sol. Phys., 162, 357 https://doi.org/10.1007/BF00733434
  2. Chae, J., Cho, K., Kwon, R.-Y., et al. 2017, Evidence for a Magnetic Reconnection Origin of Plasma Outflows along Post-CME Rays, ApJ, 841, 49 https://doi.org/10.3847/1538-4357/aa6d7a
  3. Cheng, X., Li, Y., Wan, L. F., et al. 2018, Observations of Turbulent Magnetic Reconnection within a Solar Current Sheet, ApJ, 866, 64 https://doi.org/10.3847/1538-4357/aadd16
  4. Emonet, T., Moreno-Insertis, F., & Rast, M. P. 2001, The Zigzag Path of Buoyant Mangetic Tubes and the Generation of Vorticity along Their Periphery, ApJ, 549, 1212 https://doi.org/10.1086/319469
  5. Feng, L., Inhester, B., & Gan, W. Q. 2013, Kelvin-Helmholtz Instability of a Coronal Streamer, ApJ, 774, 141 https://doi.org/10.1088/0004-637X/774/2/141
  6. Furth, H. P., Killeen, J., & Rosenbluth, M. N. 1963, Finite-Resistivity Instabilities of a Sheet Pinch, Phys. Fluids, 6, 459 https://doi.org/10.1063/1.1706761
  7. Gary, D. E., Chen, B., Dennis, B. R., et al. 2018, Microwave and Hard X-Ray Observations of the 2017 September 10 Solar Limb Flare, ApJ, 863, 83. https://doi.org/10.3847/1538-4357/aad0ef
  8. Gopalswamy, N., Yashiro, S., Makela, P., et al. 2018, Extreme Kinematics of the 2017 September 10 Solar Eruption and the Spectral Characteristics of the Associated Energetic Particles, ApJL, 863, L39 https://doi.org/10.3847/2041-8213/aad86c
  9. Gruszecki, M., Nakariakov, V. M., van Doorsselaere, T., & Arber, T. D. 2010, Phenomenon of Alfvenic Vortex Shedding, Phys. Rev. Lett., 105, 055004 https://doi.org/10.1103/PhysRevLett.105.055004
  10. Guo, L.-J., Bhattacharjee, A., & Huang, Y.-M. 2013, Distribution of Plasmoids in Post-Coronal Mass Ejection Current Sheets, ApJL, 771, L14 https://doi.org/10.1088/2041-8205/771/1/L14
  11. Howard, R. A., Moses, J. D., Vourlidas, A., et al. 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), SSRv, 136, 67
  12. Kim, H. J., & Durbin, P. A. 1988, Observations of the Frequencies in a Sphere Wake and of Drag Increase by Acoustic Excitation, Phys. Fluids, 31, 3260 https://doi.org/10.1063/1.866937
  13. Ko, Y.-K., Raymond, J. C., Lin, J., et al. 2003, Dynamical and Physical Properties of a Post-Coronal Mass Ejection Current Sheet, ApJ, 594, 1068 https://doi.org/10.1086/376982
  14. Krall, J., Chen, J., Duffin, R. T., Howard, R. A., & Thompson, B. J. 2001, Erupting Solar Magnetic Flux Ropes: Theory and Observation, ApJ, 562, 1045 https://doi.org/10.1086/323844
  15. Kwon, R.-Y., Vourlidas, A., & Webb, D. 2016, Three-Dimensional Geometry of a Current Sheet in the High Solar Corona: Evidence for Reconnection in the Late Stage of the Coronal Mass Ejections, ApJ, 826, 94 https://doi.org/10.3847/0004-637X/826/1/94
  16. Lee, H., Moon, Y.-J., & Nakariakov, V. M. 2015, Radial and Azimuthal Oscillations of Halo Coronal Mass Ejections in the Sun, ApJL, 803, L7. https://doi.org/10.1088/2041-8205/803/1/L7
  17. Lee, H., Moon, Y.-J., Nakariakov, V. M., et al. 2018, Three-dimensional Oscillations of 21 Halo Coronal Mass Ejections Using Multi-spacecraft Data, ApJ, 868, 18 https://doi.org/10.3847/1538-4357/aae5f6
  18. Lee, J., Cho, K.-S., Lee, K., et al. 2020, Formation of Post-CME Blobs Observed by LASCO-C2 and K-Cor on 2017 September 10, ApJ, 892, 129 https://doi.org/10.3847/1538-4357/ab799a
  19. Lin, J., & Forbes, T. G. 2000, Effects of Reconnection on the Coronal Mass Ejection Process, J. Geophys. Res., 105, 2375 https://doi.org/10.1029/1999JA900477
  20. Lin, J., 2002, Energetics and Propagation of Coronal Mass Ejections in Different Plasma Environments, Chin. J. As-tron. Astrophys., 2, 539 https://doi.org/10.1088/1009-9271/2/6/539
  21. Lin, J., Ko, Y.-K., Sui, L., et al. 2005, Direct Observations of the Magnetic Reconnection Site of an Eruption on 2003 November 18, ApJ, 622, 1251 https://doi.org/10.1086/428110
  22. Lin, J., Murphy, N. A., Shen, C., et al. 2015, Review on Current Sheets in CME Development: Theories and Observations, Space Sci. Rev., 194, 237 https://doi.org/10.1007/s11214-015-0209-0
  23. Ling, A. G., Webb, D. F., et al. 2014, Development of a Current Sheet in the Wake of a Fast Coronal Mass Ejection, ApJ, 784, 91 https://doi.org/10.1088/0004-637X/784/2/91
  24. Liu, W., Jin, M., Downs, C., et al. 2018, A Truly Global Extreme Ultraviolet Wave from the SOL2017-09-10 X8.2+ Solar Flare-Coronal Mass Ejection, ApJL, 864, L24 https://doi.org/10.3847/2041-8213/aad77b
  25. Liu, Y. D., Zhu, B., & Zhao, X. 2019, Geometry, Kinematics, and Heliospheric Impact of a Large CME-driven Shock in 2017 September, ApJ, 871, 8 https://doi.org/10.3847/1538-4357/aaf425
  26. Longcope, D., Unverferth, J., Klein, C., et al. 2018, Evidence for Downflows in the Narrow Plasma Sheet of 2017 September 10 and Their Significance for Flare Reconnection, ApJ, 868, 148 https://doi.org/10.3847/1538-4357/aaeac4
  27. Mei, Z., Shen, C., Wu, N., et al. 2012, Numerical Experiments on Magnetic Reconnection in Solar Flare and Coronal Mass Ejection Current Sheets, MNRAS, 425, 2824 https://doi.org/10.1111/j.1365-2966.2012.21625.x
  28. Michalek, G., Shanmugaraju, A., Gopalswamy, N., et al. 2016, Statistical Analysis of Periodic Oscillations in LASCO Coronal Mass Ejection Speeds, Sol. Phys., 291, 3751 https://doi.org/10.1007/s11207-016-1000-4
  29. Nakariakov, V. M., Aschwanden, M. J., & Van Doorsselaere, T. 2009, The Possible Role of Vortex Shedding in the Excitation of Kink-Mode Oscillations in the Solar Corona, A&A, 615, A143 https://doi.org/10.1051/0004-6361/201732474
  30. Neter, J., Kutner, M. H., Wasserman, W., & Nachtsheim, C. 1996, Applied Linear Statistical Models, 4th edn. (New York: McGraw-Hill/Irwin)
  31. Nistico, G., Vladimirov, V., Nakariakov, V. M., et al. 2018, Oscillations of Cometary Tails: A Vortex Shedding Phenomenon?, A&A, 502, 661
  32. Riley, P., Lionello, R., Mikic, Z., et al. 2007, Bursty Reconnection Following Solar Eruptions: MHD Simulations and Comparison with Observations, ApJ, 655, 591 https://doi.org/10.1086/509913
  33. Sakamoto, H., & Haniu, H. 1990, A Study on Wortex Shedding From Spheres in a Uniform Flow, J. Fluids Engineer., 112, 386 https://doi.org/10.1115/1.2909415
  34. Samanta, T., Tian, H., & Nakariakov, V. M. 2019, Evidence for Vortex Shedding in the Sun's Hot Corona, Phys. Rev. Lett., 123, 035102 https://doi.org/10.1103/physrevlett.123.035102
  35. Shanmugaraju, A., Moon, Y.-J., Cho, K.-S., et al. 2010, Quasi-Periodic Oscillations in LASCO Coronal Mass Ejection Speeds, ApJ, 708, 450 https://doi.org/10.1088/0004-637X/708/1/450
  36. Shen, C., Lin, J., & Murphy, N. A. 2011, Numerical Experiments on Fine Structure within Reconnecting Current Sheets in Solar Flares, ApJ, 737, 14 https://doi.org/10.1088/0004-637X/737/1/14
  37. Shibata, K., & Tanuma, S. 2001, Plasmoid-Induced-Reconnection and Fractal Reconnection, Earth Planets Space, 53, 473 https://doi.org/10.1186/BF03353258
  38. Song, H. Q., Kong, X. L., Chen, Y., et al. 2012, A Statistical Study on the Morphology of Rays and Dynamics of Blobs in the Wake of Coronal Mass Ejections, Sol. Phys., 276, 261 https://doi.org/10.1007/s11207-011-9848-9
  39. Syntelis, P., & Antolin, P. 2019, Kelvin-Helmholtz Instability and Alfvenic Vortex Shedding in Solar Eruptions, ApJL, 884, L4 https://doi.org/10.3847/2041-8213/ab44ab
  40. Takahashi, T., Qiu J., Shibata, K., et al. 2017, Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection, ApJ, 848, 102 https://doi.org/10.3847/1538-4357/aa8f97
  41. Tritton, D. J. 1977, Physical Fluid Dynamics, 1st edn. (London: van Nostrand Reinhold)
  42. Vrsnak, B., Poletto, G., Vujic, E., et al. 2009, Morphology and Density Structure of Post-CME Current Sheets, A&A, 499, 905 https://doi.org/10.1051/0004-6361/200810844
  43. Warren, H. P., Brooks D. H., Ugarte-Urra, I., et al. 2018, Spectroscopic Observations of Current Sheet Formation and Evolution, ApJ, 854, 122 https://doi.org/10.3847/1538-4357/aaa9b8
  44. Webb, D. F., Burkepile, J., Forbes, T. G., et al. 2003, Observational evidence of new current sheets trailing coronal mass ejections, J. Geophys. Res., 108, 1440 https://doi.org/10.1029/2003ja009923
  45. Webb, D. F., & Vourlidas, A. 2016, LASCO White-Light Observations of Eruptive Current Sheets Trailing CMEs, Sol. Phys., 291, 3725 https://doi.org/10.1007/s11207-016-0988-9
  46. Williamson, C. H. K., 1996, Vortex Dynamics in the Cylinder Wake, Annu. Rev. Fluid Mech., 28, 477 https://doi.org/10.1146/annurev.fl.28.010196.002401
  47. Yu, S., Chen, B., Reeves, K.K., et al. 2020, Magnetic Reconnection During the Post-Impulsive Phase of a Long-Duration Solar Flare: Bi-Directional Outflows as a Cause of Microwave and X-ray Bursts, ApJ, 900, 1 https://doi.org/10.3847/1538-4357/ab94b3