DOI QR코드

DOI QR Code

Transient Heat Transfer Analysis and Fire Test for Evaluation on Fire Resistance Performance of A60 Class Deck Penetration Piece

A60급 갑판 관통 관의 방화성능 평가를 위한 과도 열전달 해석과 화재시험

  • Park, Woo Chang (Department of Naval Architecture & Ocean Engineering, Mokpo National University) ;
  • Song, Chang Yong (Department of Naval Architecture & Ocean Engineering, Mokpo National University)
  • 박우창 (목포대학교 조선해양공학과) ;
  • 송창용 (목포대학교 조선해양공학과)
  • Received : 2021.02.18
  • Accepted : 2021.04.02
  • Published : 2021.04.30

Abstract

A60 class deck penetration piece is a fire-resistance apparatus installed on the deck compartment to protect lives and prevent flame diffusion in fire accidents. In case that the A60 piece is newly developed or its initial design is revised, it is important to verify the fire resistance performance using a fire test procedure (FTP) code. In this paper, transient heat transfer analysis was carried out to evaluate the fire resistance design compatibility of the newly devised A60 piece. The analysis results were verified via a fire test. The heat transfer characteristics were also investigated by comparing design specifications, such as diameter, internal configuration, and material type. The analysis was performed using ABAQUS/Implicit, and the fire test was performed according to the FTP code. The fire resistance performance of the A60 pieces satisfied the safety of life at sea convention regulation. The material type was the most important design specification for the A60 piece. Based on the maximum test temperature, the measured temperature of SUS316L material was 25% lower than that of S45C on average. The differences between thermal conductivity and specific heat of each material were 17% and 58%, respectively.

A60급 갑판 관통 관은 선박과 해양플랜트의 화재 발생 시 인명의 보호와 화염전파를 방지하기 위해 갑판 구획에 설치되는 방화 장치이다. A60급 갑판 관통 관이 새로 개발되거나 기존의 설계가 변경될 경우 국제해사기구의 화재시험절차 규정에 따라 A60급 갑판 관통 관의 방화성능을 검증하도록 요구하고 있다. 따라서, 본 논문에서는 신규 개발된 선박과 해양플랜트용 A60급 갑판 관통 관의 방화 설계의 적합성을 평가하기 위해 과도 열전달 해석을 수행하였고, 화재시험을 통해 해석결과의 타당성을 검증하였다. 또한 A60급 갑판 관통 관의 열전달 특성은 관의 직경, 내부형상 그리고 재질과 같은 설계 사양에 따라 비교하여 검토하였다. 과도 열전달 해석은 범용 유한요소법 소프트웨어인 ABAQUS/Implicit를 사용하여 수행하였으며, 해석결과의 검증을 위한 화재시험은 해사안전위원회에서 규정한 화재시험절차 코드에 따라 수행하였다. 본 연구에서 검토한 A60급 갑판 관통 관의 방화성능은 국제 해상안전규정을 만족하였고, 재질 사양의 설계가 중요한 것으로 나타났다. 최대 시험온도를 기준으로 SUS316L 재질의 측정온도는 S45C 재질보다 평균적으로 25% 낮게 나타났고, 이때 각 재질의 열전도계수와 비열의 차이는 각각 17%와 58%였다.

Keywords

References

  1. IMO, International Convention for the Safety of Life at Sea, SOLAS 1999/2000 Amendment, UK, 2010.
  2. MSC, Adoption of the International Code for Application of Fire Test Procedures. MSC.307(88), UK, 2010.
  3. J. S. Yu, H. G. Sung, J. H. Oh, An experimental study on fire-resistant boom, Journal of the Korean Society of Marine Environmental Engineering, Vol.3, No.2, pp.25-32, 2000.
  4. T. J. Choi, J. S. Kim, K. K. Choi, Y. S. Lim, Y. T. Kim, An experimental study on the fireproof of fire damper in accordance with insulation conditions on the coaming and blade, Journal of the Korean Society of Marine Engineering, Vol.37, No.4, pp.431-437, 2013. DOI: https://doi.org/10.5916/jkosme.2013.37.4.431
  5. J. M. Choi, H. C. Um, Y. H. Jin, Comparison on the fire performance of additional insulation materials for improving the fire retardancy in engine-room of FRP vessel, Journal of the Korean Society of Marine Engineering, Vol. 38, No.9, pp.1150-1155, 2014. DOI: https://doi.org/10.5916/jkosme.2014.38.9.1150
  6. C. J. Jang, N. S. Hur, I. W. Kim, Performance experiment of H-120 class fire damper for offshore, Journal of the Korean Society of Manufacturing Process Engineers, Vol.13, No.2, pp.131-136, 2014. DOI: https://doi.org/10.14775/ksmpe.2014.13.2.131
  7. C. Y. Song, Y. Kim, Identification of fire resistance characteristics of bulkhead penetration pieces for A-0 class compartment, Journal of Advanced Marine Engineering and Technology, Vol. 44, No.6, pp.414-421, 2020. DOI: https://doi.org/10.5916/jamet.2020.44.6.414
  8. ABS, Mobile Offshore Drilling Units - Fire and Safety, Rules for Building and Classing, USA, 2019.
  9. Simulia, ABAQUS User Manual, Simulia, 2018.
  10. G. Piscopo, E. Atzeni, A. Salmi, 2019, A hybrid modeling of the physics-driven evolution of material addition and track generation in laser powder directed energy deposition, Materials, Vol.12, No.17, pp.1-23, 2019. DOI: https://doi.org/10.3390/ma12172819
  11. I. Magnabosco, P. Ferro, A. Tiziani, F. Bonollo, Induction heat treatment of a ISO C45 steel bar: experimental and numerical analysis, Computational Materials Science, Vol.35, No.2, pp.98-106, 2006. DOI: https://doi.org/10.1016/j.commatsci.2005.03.010
  12. S. Suman, P. Biswas, P. Sridhar, Numerical prediction of welding distortion in submerged arc welded butt and fillet joints, International conference on Design and Manufacturing, 2016.
  13. T. Ohmura, M. Tsuboi, M. Tsuboi, M. Onodera, Specific heat measurement of high temperature thermal insulations by drop calorimeter method, International Journal of Thermophysics, Vol.24, No.2, pp.559-575, 2003. DOI: https://doi.org/10.1023/A:1022936408676
  14. A. C. Yunus, J. G. Afshin, Heat and Mass Transfer: Fundamentals and Applications, McGraw-Hill, 2012.
  15. V. Neela, D. Amitava, Three-dimensional heat transfer analysis of LENS TM process using finite element method, The International Journal of Advanced Manufacturing Technology, Vol.45, No.9, pp.935-943, 2009. DOI: https://doi.org/10.1007/s00170-009-2024-9
  16. K. J. Hwang, S. K. Yoon, Determination of the fire protection thickness of CFT column using heat transfer analysis, Journal of the Architectural Institute of Korea Structure & Construction, Vol.29, No.6, pp. 65-72, 2013. DOI: https://doi.org/10.5659/JAIK_SC.2013.29.6.65
  17. X. Y. Cui, Z. C. Li, H. Feng, S. Z. Feng, Steady and transient heat transfer analysis using a stable node-based smoothed finite element method, International Journal of Thermal Sciences, Vol.110, No.1, pp.12-25, 2016. DOI: https://doi.org/10.1016/j.ijthermalsci.2016.06.027
  18. ISO, Fire Resistance Tests - Elements of Building Construction, ISO 834-1, Switzerland, 1999.