DOI QR코드

DOI QR Code

Effect of Dietary Supplementation of Fermented Mealworm on the Growth of Juvenile Stone Flounder (Kareius bicoloratus)

사료내 갈색거저리 유산균 발효물 첨가의 돌가자미 치어 성장 효과

  • Jo, Hyun Sol (Marine Industry Research institute for East sea rim (MIRE)) ;
  • Park, Moo Eog (Gyeongbuk Research Center Freshwater Fish) ;
  • Hong, Sun Mee (Marine Industry Research institute for East sea rim (MIRE))
  • Received : 2021.01.21
  • Accepted : 2021.04.02
  • Published : 2021.04.30

Abstract

In this study, we aimed to develop a feed additive that can promote the growth of stone flounder (Kareius bicoloratus). To this end, we fermented mealworm medium (5%, w/v) with lactic acid bacteria (LAB) with antibacterial function (HeTm_LpWpPa) and evaluated its efficacy as a feed additive. Fish (approximately 5-6 g) were reared in six completely recirculating tanks (100 fish/tank) for 6 weeks. The total length of fish with and without HeTm_LpWpPa supplementation was 8.26 and 8.42 cm and body weight was 19.71 and 20.28 g, respectively, at 6 weeks. The weight gain of the control and experimental groups was 223.26 % and 248.76 %, respectively. The specific growth rate at 6 weeks was 2.79 % (control) and 2.98% (experimental), and the growth rate of the experimental group was slightly higher (0.19 %) than that of the control group. At the end of the experiment (i.e. 6 weeks), the number of fish below the mean weight in the experimental group was 3 (1 %) and that in the control group was 17 (5.7 %). These results indicate that feed supplementation of 10 % HeTm_LpWpPa could be utilized to promote the growth of flounder in farming.

본 연구는 치어 돌가자미(Kareius bicoloratus) 성장에 도움을 줄 수 있는 사료첨가물 개발을 위해 갈색거저리유충 분말배지(5 %)에 어병 항균 기능을 가지는 유산균을 발효 한 후, 사료첨가물로써의 효능을 실험하였다. 어류 병원체(비브리오균, 연쇄상구균)에 대한 항균기능을 가진 유산균(LAB; L. plantarum, W. paramesenteroides, P. acidilactici)으로 발효한 갈색거저리 추출 발효물의 양어 성장 실증실험을 위해 총 600 마리의 치어 돌가자미(약 5~6 g)를 공시하여 100마리씩 수조 6개에 임의 배치한 후 각 3수조씩 대조군과 실험군으로 분류하여 6주간 평균 전장과 체중을 측정하였다. 6주 후에 대조군의 전장 평균은 8.26 cm, 실험군은 8.42 cm이며, 대조군의 체중 평균은 19.71 g, 실험군은 20.28 g으로 HeTm_LpWpPa 첨가에 있어 성장효과가 증대됨을 확인하였다. 6주간의 증체율은 대조군 223.26 %, 실험군 248.76 %로 HeTm_LpWpPa 첨가군이 25.5 %p 성장효과가 높고, 6주 동안의 일간성장률은 대조군 2.79 %/일, 실험군 2.98 %/일로 실험군이 0.19 %p 더 높았다. 또한 평균 체중 이하의 개체 수에 있어서도 3주째에는 대조군 27마리(9 %), 실험군 9마리(3 %)이고, 6주째에는 대조군 17마리(5.7 %), 실험군 3마리(1 %)로 실험군에서는 평균 체중 이하가 1 %로 균일한 성장 효과가 있었다. 이들 결과는 동애등에 유충 추출 유산균 발효물(HeTm_LpWpPa) 사료 첨가물의 10 % 내외까지 사용은 돌가자미를 포함하는 양어 치어의 성장 촉진에 유효할 것을 시사한다.

Keywords

References

  1. T. H. Jang, S. M. Jung, E. Kim, Y. S. Lee, S. M. Lee, "Nutritional value and digestibility of Tenebrio molitor as a feed ingredient for rockfish (Sebastes schlegeli)", Journal of Fisheries and Marine Sciences Education, Vol.29, No.3, pp.888-898, 2017. DOI: https://doi.org/10.13000/JFMSE.2017.29.3.888
  2. Y. H. Choi, S. Y Yoon, S. M. Jeon, J. Y. Lee, "Effect of different levels of Hermetia illucens on growth performance and nutrient digestibility in weaning pigs", Journal of the Korea Academia-Industrial cooperation Society, Vol.20, No.9 pp.255-261, 2019. DOI: https://doi.org/10.5762/KAIS.2019.20.9.255
  3. S. Y. Ji, K. H. Park, K. H. Kim, H. S. Lee, G. S. Choi, Y. J. Lim, R. Yu, I. H. Choi, T. H. Chung, "Influence of Hermetia illucens larvae-derived functional feed additives on immune function of broilers", Journal of Environmental Science International, Vol.27, No.12 pp.1305-1307, 2018. DOI: https://doi.org/10.5322/JESI.2018.27.12.1305
  4. S. Smetana, E. Schmitt, Alexander Mathys, "Sustainable use of Hermeita illucens insect biomass for feed and food: Attributional and consequential life cycle assessment", Resources, Conservation and Recycling, Vol.144, pp.285-296, 2019. DOI: https://doi.org/10.1016/j.resconrec.2019.01.042
  5. M. E. Abd El-Hack, M. E. Shafi, W. Y. Alghamdi, V. Tufarelli, "Black soldier fly (Hermetia illucens) meal as a promising feed ingredient for poultry: A comprehensive review", Agriculture, Vol.10, No.8, pp.339-370, 2020. DOI: https://doi.org/10.3390/agriculture10080339
  6. S. H. Kim, C. H. Bae, J. H. Yun, J. Sim, H. S. Han, "Evaluation of black soldier fly meal as a dietary animal protein source replacing fish meal in korean catfish Silurus asotus", Journal of Fisheries and Marine Sciences Education, Vol.31, No.6, pp.1495-1502, 2019. DOI: https://doi.org/10.13000/JFMSE.2019.12.31.6.1495
  7. J. E. Lee, A, J Lee, D. E. Jo, J. H. Cho, K. J. Youn, E. Y. Yun, J. S. Hwang, M. Jun, B. H. Kang, "Cytotoxic effects of Tenebrio molitor larval extracts against Hepatocellular carcinoma", Journal of the Korean Society of Food Science and Nutrition, Vol.44, No.2 pp.200-207, 2015. DOI: https://doi.org/10.3746/jkfn.2015.44.2.200
  8. M. C Seo, T. W. Goo, M. Y, Chung, M. H Baek, J. S. Hwang, M. A. Kim, E. Y. Yun "Tenebrio molitor larvae inhibit adipogenesis through AMPK and MAPKs signaling in 3T3-L1 adipocytes and obesity in high-fat diet-induced obese mice", International Journal of Molecular Sciences, Vol.18, No.3 pp.518-532, 2017. DOI: https://doi.org/10.3390/ijms18030518
  9. A. Biswas, H. Araki, T. Sakata, T. Nakamori, K. Takii, "Optimum fish meal replacement by soy protein concentrate from soymilk and phytase supplementation in diet of red sea bream, Pagrus major", Aquaculture, Vol.506, pp.51-59, 2019. DOI: https://doi.org/10.1016/j.aquaculture.2019.03.023
  10. C. M. A Caipang, J. Mabuhay-Omar, M. M. Gonzales Plasus, "Plant and fruit waste products as phytogenic feed additives in aquaculture", AACL Bioflux Vol.12, No.1 pp.261-268, 2019. DOI: http://www.bioflux.com.ro/docs/2019.261-268
  11. F. Norambuena, K. Hermon, V. Skrzypczyk, J. A. Emery, Y. Sharon, A. Beard, G. M. Turchini, "Algae in fish feed: performances and fatty acid metabolism in juvenile atlantic salmon", PLOS ONE, Vol.10, No.4 pp.1-17, 2015. DOI: https://doi.org/10.1371/journal.pone.0124042
  12. H. Nakagawa, "Usefulness of waste algae as a feed additive for fish culture", Developments in Food Science, Vol.42, pp.243-252, 2004. DOI: https://doi.org/10.1016/S0167-4501(04)80026-8
  13. M. G. Mustafa, S. Wakamatsu, T. A. Takeda, T. Umino, "Effects of algae meal as feed additive on growth feed efficiency and body composition in red sea bream", Fisheries Science, Vol.61, No.1 pp. 25-28, 1995. DOI: https://doi.org/10.2331/fishsci.61.25
  14. K. Jhon, M. C. Kim, Y. H. Kim, M. S. Heo, "Effects of the culture broth of lactic acid bacteria cultured in herb extracts on growth promotion and nonspecific immune responses of aquacultured fish", Journal of Life Science, Vol.19, No.1, pp.87-93, 2009. DOI: https://dx.doi.org/10.5352/JLS.2009.19.1.087
  15. S. Camila, L. Yanett, R. Carlos, "Probiotic bacteria as an healthy alternative for fish aquaculture", 28, Web of Science, 2017, 115-132 DOI: https://dx.doi.org/10.5772/intechopen.71206
  16. K. M. Wanka, T. Damerau, B. Costas, A. Krueger, S. Wuertz, "Isolation and characterization of native probiotics for fish farming", BMC Microbiology Vol.18, No.119, pp.1260-1262, 2018. DOI: https://doi.org/10.1186/s12866-018-1260-2
  17. N. Akhter, B. Wu, A. M. Memon, M. Mohsin, "Probiotics and prebiotics associated with aquaculture: A review", Fish & Shellfish Immunology Vol.45, No. 2 pp.733-741, 2015. DOI: https://doi.org/10.1016/j.fsi.2015.05.038
  18. S. H. Hoseinifar, M. A. Esteban, A. Cuesta, Y. Z. Sun, "Prebiotics and fish immune response: A review of current knowledge and future perspectives", Reviews in Fisheries Science & Aquaculture, Vol.23, No.4 pp.315-328, 2015. DOI: https://doi.org/10.1080/23308249.2015.1052365
  19. S. Ganguly, K C. Dora, S. Sarkar, S. Chowdhury, "Supplementation of prebiotics in fish feed: a review", Rev Fish Biol Fisheries Vol.23, pp.195-199, 2020. DOI: https://doi.org/10.1007/s11160-012-9291-5
  20. M. Moradi, S. A. Kousheh, H. Almasi, A. Alizadeh, A. Lotfi, "Postbiotics produced by lactic acid bacteria: The next frontier in food safety", Comprehensive Reviews in Food Science and Food Safety, Vol.19, No.6 pp.3390-3415, 2020. DOI: https://doi.org/10.1111/1541-4337.12613