DOI QR코드

DOI QR Code

Gastrulation : Current Concepts and Implications for Spinal Malformations

  • Received : 2020.04.25
  • Accepted : 2020.05.02
  • Published : 2021.05.01

Abstract

It has been recognised for over a century that the events of gastrulation are fundamental in determining, not only the development of the neuraxis but the organisation of the entire primitive embryo. Until recently our understanding of gastrulation was based on detailed histological analysis in animal models and relatively rare human tissue preparations from aborted fetuses. Such studies resulted in a model of gastrulation that neurosurgeons have subsequently used as a means of trying to explain some of the congenital anomalies of caudal spinal cord and vertebral development that present in paediatric neurosurgical practice. Recent advances in developmental biology, in particular cellular biology and molecular genetics have offered new insights into very early development. Understanding the processes that underlie cellular interactions, gene expression and activation/inhibition of signalling pathways has changed the way embryologists view gastrulation and this has led to a shift in emphasis from the 'descriptive and morphological' to the 'mechanistic and functional'. Unfortunately, thus far it has proved difficult to translate this improved knowledge of normal development, typically derived from non-human models, into an understanding of the mechanisms underlying human malformations such as the spinal dysraphisms and anomalies of caudal development. A paediatric neurosurgeons perspective of current concepts in gastrulation is presented along with a critical review of the current hypotheses of human malformations that have been attributed to disorders of this stage of embryogenesis.

Keywords

References

  1. Bremer JL : Dorsal intestinal fistula; accessory neurenteric canal; diastematomyelia. AMA Arch Pathol 54 : 132-138, 1952
  2. Cearns MD, Hettige S, De Coppi P, Thompson DNP : Currarino syndrome: repair of the dysraphic anomalies and resection of the presacral mass in a combined neurosurgical and general surgical approach. J Neurosurg Pediatr 22 : 584-590, 2018 https://doi.org/10.3171/2018.5.PEDS17582
  3. Corallo D, Trapani V, Bonaldo P : The notochord: structure and functions. Cell Mol Life Sci 72 : 2989-3008, 2015 https://doi.org/10.1007/s00018-015-1897-z
  4. Dias LA, Nakanishi M, Mangussi-Gomes J, Canuto M, Takano G, Oliveira CA : Successful endoscopic endonasal management of a transclival cerebrospinal fluid fistula secondary to ecchordosis physaliphora--an ectopic remnant of primitive notochord tissue in the clivus. Clin Neurol Neurosurg 117 : 116-119, 2014 https://doi.org/10.1016/j.clineuro.2013.11.026
  5. Dias MS, Azizkhan RG : A novel embryogenetic mechanism for Currarino's triad: inadequate dorsoventral separation of the caudal eminence from hindgut endoderm. Pediatr Neurosurg 28 : 223-229, 1998 https://doi.org/10.1159/000028655
  6. Emura T, Asashima M, Furue M, Hashizume K : Experimental split cord malformations. Pediatr Neurosurg 36 : 229-235, 2002 https://doi.org/10.1159/000058425
  7. Emura T, Asashima M, Hashizume K : An experimental animal model of split cord malformation. Pediatr Neurosurg 33 : 283-292, 2000 https://doi.org/10.1159/000055973
  8. Escobar LF, Heiman M, Zimmer D, Careskey H : Urorectal septum malformation sequence: prenatal progression, clinical report, and embryology review. Am J Med Genet A 143A : 2722-2726, 2007 https://doi.org/10.1002/ajmg.a.31925
  9. Escobar LF, Weaver DD, Bixler D, Hodes ME, Mitchell M : Urorectal septum malformation sequence. Report of six cases and embryological analysis. Am J Dis Child 141 : 1021-1024, 1987 https://doi.org/10.1001/archpedi.1987.04460090098038
  10. Ferrer-Vaquer A, Hadjantonakis AK : Birth defects associated with perturbations in preimplantation, gastrulation, and axis extension: from conjoined twinning to caudal dysgenesis. Wiley Interdiscip Rev Dev Biol 2 : 427-442, 2013 https://doi.org/10.1002/wdev.97
  11. Ferrer-Vaquer A, Viotti M, Hadjantonakis AK : Transitions between epithelial and mesenchymal states and the morphogenesis of the early mouse embryo. Cell Adh Migr 4 : 447-457, 2010 https://doi.org/10.4161/cam.4.3.10771
  12. Fieggen AG, Dunn RN, Pitcher RD, Millar AJ, Rode H, Peter JC : Ischiopagus and pygopagus conjoined twins: neurosurgical considerations. Childs Nerv Syst 20 : 640-651, 2004
  13. Gegg CA, Vollmer DG, Tullous MW, Kagan-Hallet KS : An unusual case of the complete Currarino triad: case report, discussion of the literature and the embryogenic implications. Neurosurgery 44 : 658-662, 1999 https://doi.org/10.1097/00006123-199903000-00127
  14. Jo Mauch T, Albertine KH : Urorectal septum malformation sequence: Insights into pathogenesis. Anat Rec 268 : 405-410, 2002 https://doi.org/10.1002/ar.10180
  15. Kochling J, Karbasiyan M, Reis A : Spectrum of mutations and genotype-phenotype analysis in Currarino syndrome. Eur J Hum Genet 9 : 599-605, 2001 https://doi.org/10.1038/sj/ejhg/5200683
  16. Kole MJ, Fridley JS, Jea A, Bollo RJ : Currarino syndrome and spinal dysraphism. J Neurosurg Pediatr 13 : 685-689, 2014 https://doi.org/10.3171/2014.3.PEDS13534
  17. Lagman C, Varshneya K, Sarmiento JM, Turtz AR, Chitale RV : Proposed diagnostic criteria, classification schema, and review of literature of notochord-derived ecchordosis physaliphora. Cureus 8 : e547, 2016
  18. Menezes AH, Traynelis VC : Spinal neurenteric cysts in the magnetic resonance imaging era. Neurosurgery 58 : 97-105; discussion 97-105, 2006 https://doi.org/10.1227/01.NEU.0000192160.79897.25
  19. Padmanabhan R : Retinoic acid-induced caudal regression syndrome in the mouse fetus. Reprod Toxicol 12 : 139-151, 1998 https://doi.org/10.1016/s0890-6238(97)00153-6
  20. Paleologos TS, Thom M, Thomas DG : Spinal neurenteric cysts without associated malformations. Are they the same as those presenting in spinal dysraphism? Br J Neurosurg 14 : 185-194, 2000 https://doi.org/10.1080/026886900408342
  21. Pang D, Dias MS, Ahab-Barmada M : Split cord malformation: part I: a unified theory of embryogenesis for double spinal cord malformations. Neurosurgery 31 : 451-480, 1992 https://doi.org/10.1227/00006123-199209000-00010
  22. Pennimpede T, Proske J, Konig A, Vidigal JA, Morkel M, Bramsen JB, et al. : In vivo knockdown of Brachyury results in skeletal defects and urorectal malformations resembling caudal regression syndrome. Dev Biol 372 : 55-67, 2012 https://doi.org/10.1016/j.ydbio.2012.09.003
  23. Rossant J, Tam PP : Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136 : 701-713, 2009 https://doi.org/10.1242/dev.017178
  24. Roszko I, Sawada A, Solnica-Krezel L : Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 20 : 986-997, 2009 https://doi.org/10.1016/j.semcdb.2009.09.004
  25. Rulle A, Tsikolia N, de Bakker B, Drummer C, Behr R, Viebahn C : On the enigma of the human neurenteric canal. Cells Tissues Organs 205 : 256-278, 2018 https://doi.org/10.1159/000493276
  26. Sayyid SK, Wong PK, Read W, Monson DK, Umpierrez M, Gonzalez F, et al. : The clincoradiologic spectrum of notochordal derived masses. Clin Imaging 56 : 124-134, 2019 https://doi.org/10.1016/j.clinimag.2019.04.003
  27. Sekiya K, Watanabe M, Nadgir RN, Buch K, Flower EN, Kaneda T, et al. : Nasopharyngeal cystic lesions: Tornwaldt and mucous retention cysts of the nasopharynx: findings on MR imaging. J Comput Assist Tomogr 38 : 9-13, 2014 https://doi.org/10.1097/RCT.0b013e3182a77699
  28. Shukla M, Behari S, Guruprasad B, Das KK, Mehrotra A, Srivastava AK, et al. : Spinal neurenteric cysts: associated developmental anomalies and rationale of surgical approaches. Acta Neurochir (Wien) 157 : 1601-1610, 2015 https://doi.org/10.1007/s00701-015-2484-7
  29. Thottungal AD, Charles AK, Dickinson JE, Bower C : Caudal dysgenesis and sirenomelia-single centre experience suggests common pathogenic basis. Am J Med Genet A 152A : 2578-2587, 2010 https://doi.org/10.1002/ajmg.a.33599
  30. Vaishya S, Kumarjain P : Split cord malformation: three unusual cases of composite split cord malformation. Childs Nerv Syst 17 : 528-530, 2001 https://doi.org/10.1007/s003810100482
  31. Voiculescu O, Bertocchini F, Wolpert L, Keller RE, Stern CD : The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449 : 1049-1052, 2007 https://doi.org/10.1038/nature06211
  32. Wolpert L : The triumph of the embryo. Oxford : Oxford University Press, 1991
  33. Xanthos JB, Kofron M, Tao Q, Schaible K, Wylie C, Heasman J : The roles of three signaling pathways in the formation and function of the Spemann Organizer. Development 129 : 4027-4043, 2002 https://doi.org/10.1242/dev.129.17.4027