DOI QR코드

DOI QR Code

세륨산화물과 금 나노입자의 계면에서 일어나는 물 분자의 활성화

Density Functional Theory Study of Water Activation at Au-Ceria Interfaces

  • 강은지 (충남대학교 신소재공학과) ;
  • 최혁 (충남대학교 신소재공학과) ;
  • 이주혁 (충남대학교 신소재공학과) ;
  • 김현유 (충남대학교 신소재공학과)
  • Kang, Eunji (Department of Materials Science and Engineering, Chungnam National University) ;
  • Choi, Hyuk (Department of Materials Science and Engineering, Chungnam National University) ;
  • Lee, Ju Hyeok (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyun You (Department of Materials Science and Engineering, Chungnam National University)
  • 투고 : 2021.01.31
  • 심사 : 2021.03.16
  • 발행 : 2021.04.27

초록

We use vdW-corrected density functional theory (DFT) calculations with additional electron distribution correction to study the water binding chemistry of an Au nanoparticle supported on CeO2(111) with a linear step-edge. The initial structural model of Au/CeO2 used for DFT calculations is constructed by stabilizing a Au9 nanoparticle at the linear step-edge on a CeO2(111) slab. The calculated binding energy of a water molecule clearly shows that the interfacial site between Au and CeO2 binds water more strongly than the binding sites at the surface of Au nanoparticle. Subsequent water dissociation calculation result shows that the interface-bound water can be relatively easily dissociated into-OH and -H, providing a hydroxyl group that can be utilized as an oxygen source for CO oxidation. Based on the low dissociation energy of the interface bound water molecule, we suggest that the water at the Au-CeO2 interface can facilitate further oxidation of Au-bound CO. Our results point out that Au-CeO2 interface-bound water is beneficial for low-temperature oxidation reactions such as the water-gas shift reaction or preferential CO oxidation reaction.

키워드

과제정보

This work was supported by research fund of Chungnam National University.

참고문헌

  1. T. Risse, S. Shaikhutdinov, N. Nilius, M. Sterrer and H.-J. Freund, Acc. Chem. Res., 41, 949 (2008). https://doi.org/10.1021/ar800078m
  2. S. Schauermann and H.-J. Freund, Acc. Chem. Res., 48, 2775 (2015). https://doi.org/10.1021/acs.accounts.5b00237
  3. S. Schauermann, N. Nilius, S. Shaikhutdinov and H.-J. Freund, Acc. Chem. Res., 46, 1673 (2013). https://doi.org/10.1021/ar300225s
  4. M. Cargnello, V. V. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero and C. B. Murray, Science, 341, 771 (2013). https://doi.org/10.1126/science.1240148
  5. H. Y. Kim and G. Henkelman, J. Phys. Chem. Lett., 4, 216 (2013). https://doi.org/10.1021/jz301778b
  6. J. Graciani, K. Mudiyanselage, F. Xu, A. E. Baber, J. Evans, S. D. Senanayake, D. J. Stacchiola, P. Liu, J. Hrbek and J. F. Sanz, Science, 345, 546 (2014). https://doi.org/10.1126/science.1253057
  7. J. A. Rodriguez, D. C. Grinter, Z. Liu, R. M. Palomino and S. D. Senanayake, Chem. Soc. Rev., 46, 1824 (2017). https://doi.org/10.1039/C6CS00863A
  8. H. Ha, S. Yoon, K. An and H. Y. Kim, ACS Catal., 8, 11491 (2018). https://doi.org/10.1021/acscatal.8b03539
  9. Y. Choi, S. K. Cha, H. Ha, S. Lee, H. K. Seo, J. Y. Lee, H. Y. Kim, S. O. Kim and W. Jung, Nat. Nanotechnol., 14, 245 (2019). https://doi.org/10.1038/s41565-019-0367-4
  10. M. Yoo, Y.-S. Yu, H. Ha, S. Lee, J.-S. Choi, S. Oh, E. Kang, H. Choi, H. An and K.-S. Lee, Energy Environ. Sci., 13, 1231 (2020). https://doi.org/10.1039/C9EE03492G
  11. H. Y. Kim and G. Henkelman, J. Phys. Chem. Lett., 3, 2194 (2012). https://doi.org/10.1021/jz300631f
  12. H. Y. Kim, H. M. Lee and G. Henkelman, J. Am. Chem. Soc., 134, 1560 (2012). https://doi.org/10.1021/ja207510v
  13. L. Zhang, H. Y. Kim and G. Henkelman, J. Phys. Chem. Lett., 4, 2943 (2013). https://doi.org/10.1021/jz401524d
  14. B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li and T. Zhang, Nat. Chem., 3, 634 (2011). https://doi.org/10.1038/nchem.1095
  15. A. Wang, J. Li and T. Zhang, Nat. Rev. Chem., 2, 65 (2018). https://doi.org/10.1038/s41570-018-0010-1
  16. J. A. Rodriguez, P. Liu, J. Hrbek, J. Evans and M. Perez, Angew. Chem., Int. Ed., 46, 1329 (2007). https://doi.org/10.1002/anie.200603931
  17. J. A. Rodriguez, J. Graciani, J. Evans, J. B. Park, F. Yang, D. Stacchiola, S. D. Senanayake, S. Ma, M. Perez and P. Liu, Angew. Chem., 121, 8191 (2009). https://doi.org/10.1002/ange.200903918
  18. J. A. Rodriguez, J. C. Hanson, D. Stacchiola and S. D. Senanayake, Phys. Chem. Chem. Phys., 15, 12004 (2013). https://doi.org/10.1039/c3cp50416f
  19. A. Bruix, J. A. Rodriguez, P. J. Ramirez, S. D. Senanayake, J. Evans, J. B. Park, D. Stacchiola, P. Liu, J. Hrbek and F. Illas, J. Am. Chem. Soc., 134, 8968 (2012). https://doi.org/10.1021/ja302070k
  20. H. Y. Kim and P. Liu, ChemCatChem, 5, 3673 (2013). https://doi.org/10.1002/cctc.201300449
  21. J. B. Park, J. Graciani, J. Evans, D. Stacchiola, S. Ma, P. Liu, A. Nambu, J. F. Sanz, J. Hrbek and J. A. Rodriguez, Proc. Natl. Acad. Sci. U. S. A., 106, 4975 (2009). https://doi.org/10.1073/pnas.0812604106
  22. H. Ha, H. An, M. Yoo, J. Lee and H. Y. Kim, J. Phys. Chem, 121, 26895 (2017).
  23. G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169 (1996). https://doi.org/10.1103/physrevb.54.11169
  24. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, Phys. Rev. B, 57, 1505 (1998). https://doi.org/10.1103/physrevb.57.1505
  25. D. Fernandez-Torre, K. Kosmider, J. Carrasco, M. V. Ganduglia-Pirovano and R. Perez, J. Phys. Chem. C, 116, 13584 (2012). https://doi.org/10.1021/jp212605g
  26. K. Jiri, R. B. David and M. Angelos, J. Phys.: Condens. Matter, 22, 022201 (2010). https://doi.org/10.1088/0953-8984/22/2/022201
  27. J. Klimes, D. R. Bowler and A. Michaelides, Phys. Rev. B, 83, 195131 (2011). https://doi.org/10.1103/physrevb.83.195131
  28. P. E. Blochl, Phys. Rev. B, 50, 17953 (1994). https://doi.org/10.1103/physrevb.50.17953
  29. K. Shin, L. Zhang, H. An, H. Ha, M. Yoo, H. M. Lee, G. Henkelman, H. Y. Kim, Nanoscale, 9, 5244 (2017). https://doi.org/10.1039/c7nr01382e
  30. H. Choi, E. Kang, H. Y. Kim, Korean J. Mater. Res., 30, 267 (2020). https://doi.org/10.3740/MRSK.2020.30.5.267