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Abstract  

  Unmanned aerial vehicles (UAVs) are increasingly needed as they can replace manned aircrafts in dangerous military 
missions. However, because of their low autonomy, current UAVs can execute missions only under continuous operator 
control. To overcome this limitation, higher autonomy levels of UAVs based on autonomous situational awareness is 
required. In this paper, we propose an autonomous situational awareness software consisting of situation awareness 
management, threat recognition, threat identification, and threat space analysis to detect dynamic situational change by 
external threats. We implemented the proposed software in real mission computer hardware and evaluated the 
performance of situational awareness toward dynamic radar threats in flight simulations. 
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1. Introduction 
 

In recent years, the unmanned aerial vehicle (UAV) market 
has been growing rapidly due to demand in sectors such as 
transportation, infrastructure management, and disaster 
detection including for forest fires and emergency rescue [1–3]. 
Moreover, UAVs are increasingly needed in the defense sector 
because of their advantages in 3D (Dull, Dirty, and Dangerous) 
missions as potential future replacements for manned air 
vehicles. However, because of their low autonomy levels that 
necessitate human supervision,  UAVs can be operated only in 
situations where operators can control them continuously. A 
high level of autonomy for UAVs is crucial to overcome this 
limitation and allow UAVs to perform dangerous missions, such 
as enemy territory infiltration and reconnaissance missions 
independently. 

The autonomous UAV technology for executing 3D missions 
can be mainly classified into autonomous situational awareness 
technology for understanding and predicting situations and 
autonomous decision-making technology for adaptively 
making decisions depending on the situation [4]. The former 
includes object recognition technology, context inference 
technology, situation representation technology, and so forth 
[5–7]. The autonomous decision-making technology includes 
path optimization technology and collision avoidance 

technology in dynamic situations [8–9]. Autonomous decision 
making requires the support of autonomous situational 
awareness technology for recognizing external situation 
changes. In the civil sector, deep learning-based situational 
awareness technology is actively investigated using learning 
data obtained from real-world situations [1–3]. However, 
autonomous situational awareness technology is difficult to 
apply in the 3D military missions because data cannot be 
obtained in actual situations as sufficiently as necessary for 
learning. Furthermore, although situational awareness 
technology considering external communication conditions [10] 
and ontology-based situational awareness technology [6] have 
been proposed, they cannot yet handle threat situations and has 
not been verified using real embedded computer for UAVs. 

In this paper, we developed an autonomous situational 
awareness software to recognize external threat situations and 
validate the performance through simulated flight tests. The 
proposed autonomous situational awareness software 
comprises a situational awareness management function that 
manages the situational awareness procedure, a threat 
recognition function that recognizes external threats, a threat 
identification function that identifies information, such as the 
location of the recognized threat, and a threat analysis function 
that analyzes the effect of the identified threat on the mission. 
Here, external threats are assumed to be radars capable of 
detecting the UAV, and the subject UAV is assumed to be a low 
observable fixed-wing UAV with a built-in radar warning Received: Feb. 18, 2021 Revised: Mar. 18, 2021 Accepted: Mar. 21, 2021 
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receiver (RWR) sensor that can measure the azimuth between 
the radar and UAV. 

The autonomous situational awareness software uses the 
RWR sensor to detect the presence of a new radar, and a 
position identification flight is performed for the recognized 

new radar to identify its location. When the location of the new 
radar is identified, the threat space for the radar are calculated 
to analyze the effect on the mission. In this paper, the threat 
identification and analysis functions are activated or 
deactivated depending on the situation for computational 
efficiency. In particular, Graphic Processing Unit (GPU)-based 
parallel operations are applied in an embedded environment to 
improve the speed of analyzing the radar threat space. The 
performance of the developed autonomous situational 
awareness software was verified through repeated simulated 
flight tests by modifying the mission computer hardware 
mounted on an actual aircraft and loading the autonomous 
situational awareness software. 
 

2. Structure of Autonomous Situational 
Awareness Software for UAV 

 

2.1 Definition of Threat and Spatial Situation 
Information 

A UAV should be capable of performing missions and flight 
path planning onboard to perform missions autonomously. This 
requires it to have the ability to distinguish between the space it 
can fly and the space it cannot fly. In this paper, we have defined 
the spatial situation information including the radar threat space 
and the terrain collision risk space, as shown in Fig. 1. The aim 
was recognizing the situation induced by the radar and the 
terrain, which are typical threats that can occur during 
performing military missions by UAVs.  

A mission area is divided into three-dimensional grids, and 
the spatial information, such as radar and terrain information, is 
stored with 2 Bytes data in each grid. The spatial situation 
information must be updated in real-time according to the UAV 
status information and the data acquired from the sensors for 
onboard flight path and mission re-planning. Radar threats were 

defined with 4 bits to allow the elastic reflection of the threat 
radius based on the detection probability. This can be used to 
derive a flight path that takes the risk of detection of some 
probability when there is no flight path that can avoid the 
maximum threat radius. Restricted area, airspace, and 
cumulonimbus information, in addition to terrain information, 
are classified and defined to facilitate the flight path re-planning 
according to the situation considering the area intrusion. 
 

2.2 Structure of Autonomous UAV Software 
The proposed autonomous UAV software consists of an 

autonomous mission management unit and an autonomous 
situational awareness unit. The autonomous mission 
management unit manages the mission and the UAV, and makes 
decisions based on the situation recognition result. The 
autonomous situational awareness unit recognizes the current 
situation based on the sensor data and the UAV information. 
The autonomous mission management unit can be subdivided 
into the mission management function, mission re-planning 
function, flight path re-planning function, and so forth; however, 
they will not be discussed because they are not in the scope of 
this papaer. The autonomous situation awareness unit comprises 
the situational awareness management function, threat 
recognition function, threat identification function, and threat 
space analysis function. The situational awareness management 
function pre-processes the sensing information and the UAV 
status information, and delivers it to other functions in the 
autonomous situational awareness unit. Moreover, it activates 
the threat identification function and the threat space analysis 
function according to the current situational awareness 
procedure, and updates the spatial situation information based 
on the result. The threat recognition function is responsible for 
continuously monitoring the sensor data and the UAV 
information to determine whether a new threat exists or not. The 
threat identification function uses the sensor data and the UAV 
information (location, speed, pose, etc.) accumulated for a 
certain period of time regarding a new threat to identify the 
location of threat. Here, the flight path re-planning is requested 
by the autonomous mission management unit to increase the 
accuracy of identifying the location of threat. The threat space 
analysis function uses the identified threat and terrain 
information to distinguish the threat space and the hiding space 
through the line-of-sight (LOS) analysis. The proposed 
structure is universally applicable for a variety of threats; 
however, in this paper, we implemented the recognition, 
identification, and analysis functions for the radar threat, a 
typical threat, and verified their performance. A detailed 
description of each function will be provided, starting with the 
next subsection. 
 
2.3 Situational Awareness Management Function 

Fig. 1 Structure of Spatial Situation Information for a 
UAV 
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The situational awareness management function initializes 
the spatial situation information and other functions, and if a 
new threat is recognized by the threat recognition function, it 
activates the threat identification and spatial analysis functions 
according to the procedure and delivers the required 
information. Furthermore, it makes judgements on the 
emergency situation by directly analyzing the sensor data. 

The procedure of the situational awareness management 
function is shown in Fig. 3. First, the spatial situation 
information and each function are initialized. The initial spatial 
situation information is fetched from a file created based on the 
threat information at the time of pre-mission planning. 
Furthermore, as the threat recognition function requires 
continuous monitoring, it is activated in the initialization stage 
and the state is maintained. After the initialization, the 
autonomous situational awareness is performed by repeating 
the procedure in the loop of Fig. 3. First, after receiving the 
sensor data and the UAV information, it is determined whether 
the situation is emergency or not. If the mode of a particular 
radar in the RWR data is Track/Launch, then the UAV is in a 
situation of being detected/tracked by the radar, which 
corresponds to an emergency situation. Furthermore, if the 
current position of UAV corresponds to a radar threat space or 
a terrain collision risk space, it is also determined as an 
emergency. Once the judgment of an emergency situation is 
completed, it is checked from the threat recognition function 
whether a new threat has occurred. When a new threat occurs, 
the threat identification function is activated. When the threat 
identification is complete, the result is reported to the 
autonomous mission management unit, and the threat space 
analysis function is activated to perform the threat space 
analysis for the identified threat. After the threat space analysis 
is completed, the result is reflected in the threat space situation 
information, and the completion is reported to the autonomous 
mission management unit to perform the mission and flight path 
re-planning. 
 

Fig. 2 Structure of the Autonomous Situational Awareness Software for UAVs  

Fig. 3 Process of Autonomous Situational Awareness 
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2.4 Threat Recognition Function 
The threat recognition function determines whether a new 

threat has occurred based on the sensor data and the UAV’s 
information. In this papaer, we use the RWR sensor data to 
perform the function of recognizing a new radar that has not 
been recognized in advance. Because the RWR sensor provides 
the type and azimuth of the radar, for which the signals have 
been detected at the current position, it can be used to determine 
whether the radar was recognized newly or not. Fig. 4 shows 
the algorithm for determining a new radar. First, the azimuth 
between the current UAV position and the pre-recognized radar 
is calculated. Subsequently, the calculated azimuth information 
and the radar type are compared to filter out the radars that are 
impossible to match with the RWR data. The matching is 
performed between the remaining radar and RWR lists, and a 
combination with the highest probability is selected through the 
maximum likelihood estimation (MLE) method. When there are 
a set R of m radars and a set S of n RWRs, a certain matching 
combination Z between the radars and the RWR can be defined 
as follows: 
         R = {𝑟𝑟1, 𝑟𝑟2, ⋯ , 𝑟𝑟𝑚𝑚},
         S = {𝑠𝑠1, 𝑠𝑠, ⋯ , 𝑠𝑠𝑛𝑛},                             (1)

R = {𝑧𝑧1, 𝑧𝑧2, ⋯ , 𝑧𝑧𝑛𝑛}, 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 0 ≤ 𝑧𝑧𝑖𝑖 ≤ 𝑚𝑚. 
 

For the matching combination Z, a radar list number to be 
matched is selected in the order of the RWR list. Furthermore, 
it should be allowed to select 0, which indicates a new radar 
because the case of a new radar should be also considered. The 
probability of the combination Z, created this way, is calculated 
as the product of the normal distribution probability of the RWR 
measurement error obtained by the difference between the 
azimuth sd measured by the RWR for each RWR, and the 
azimuth rd calculated using the radar’s position and the 
aircraft’s position, as expressed in Eqs. (2) and (3). Here, in the 
case of a new radar, because the rd value does not exist, its 
probability is replaced with the probability of not being any one 
of all radars. In this paper, a combination with the highest 
probability is selected by calculating the probabilities of all 
possible combinations to facilitate the recognition of a new 
radar. 

         𝑃𝑃(𝑍𝑍) = ∏ 𝑝𝑝(𝑠𝑠𝑖𝑖 = 𝑟𝑟𝑧𝑧𝑖𝑖)𝑛𝑛
𝑖𝑖=1                       (2) 

𝑝𝑝(𝑠𝑠𝑖𝑖 = 𝑟𝑟𝑧𝑧𝑖𝑖) = {
𝑓𝑓𝜇𝜇,𝜎𝜎(|𝑠𝑠𝑠𝑠𝑖𝑖 − 𝑟𝑟𝑠𝑠𝑧𝑧𝑖𝑖|), 𝑖𝑖𝑓𝑓 𝑧𝑧𝑖𝑖 > 0

∏ (1 − 𝑓𝑓𝜇𝜇,𝜎𝜎(|𝑠𝑠𝑠𝑠𝑖𝑖 − 𝑟𝑟𝑠𝑠𝑘𝑘|)) , 𝑖𝑖𝑓𝑓 𝑧𝑧𝑖𝑖 = 0𝑚𝑚
𝑘𝑘=1

 (3)      

 

2.5 Threat Identification Function 
The threat identification function identifies detailed 

information, such as type, model name, and position of the 
recognized new threat. The threat identification function used 
in this paper monitors the azimuth of the RWR ID recognized 
as a new radar for a certain period, with the aim of identifying 
its intersection point as the position of the radar. Existing 
studies that use the RWR azimuth information to identify the 
radar’s position [11–13] measured the azimuth from multiple 
positions while flying for a long time with a mission of 
identifying the radar positions. Moreover, they identified the 
radar’s position with an error of less than 1 km through the 
triangulation. However, we aimed to identify the position of a 
radar in a short period to avoid it when a radar that was not 
recognized beforehand is suddenly detected. Therefore, we 
propose a method of identifying the approximate position by 
performing a flight for the position identification within 1 min. 
To improve the position identification accuracy of the radar, it 
is highly efficient to fly in a circle around the radar’s position. 
However, it is impossible to fly in a circle because the distance 
between the radar and the UAV cannot be identified by the 
RWR alone. Furthermore, if safety is considered, it is better to 
fly in the orthogonal direction of the RWR azimuth; however, 
the signals of RWR may disappear. Hence, flying at an acute 
angle close to the orthogonal direction is needed. However, as 
the angle changes depending on the specifications of the aircraft 
and the detection distance of the radar, the RWR signals are 
collected while flying 1 min in the direction that forms an acute 
angle of 80° with the RWR azimuth arbitrarily, as shown in Fig. 
5. The method of identifying the position using the collected 
RWR data was implemented based on the multiple sampling 
correlation algorithm (MSCA) that has excellent computational 
efficiency [11]. The MSCA method collects the line of bearing 
(LOB) fan areas reflecting the maximum direction detection 
error in the direction detection angle from various positions. 

Fig. 4 Method for New Radar Recognition 
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Additionally, it determines the center point of the shape formed 
with its crossing area as the horizontal position of the radar. 
However, because the crossing section of the LOB fan areas, 
collected in a short time, is excessively broad to identify the 
radar’s position, we proposed a method of estimating the radar’s 
position considering the error characteristics of the RWR. Fig. 
6 shows that it begins by setting the crossing area of two LOB 
fan areas as a candidate area, comparable to the MSCA method. 
As the actual position of the radar exists in the crossing area 
between the LOB fan at the time of initial measurement and the 
LOB fan after a certain period, the crossing area is selected as a 
candidate area. Considering the complexity of the calculation 
and desired responsiveness, we selected the crossing area of the 
LOB fan at the time of initial measurement and the LOB fan 
after 10 s as a candidate area. After selecting the candidate area, 
the probability of existing in each grid Ploc(ci) is calculated, as 
expressed in Eq. (4), for all azimuths collected within 50 s for 
each grid in the area.  

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙(𝑐𝑐𝑖𝑖) = ∏ 𝑓𝑓𝜇𝜇,𝜎𝜎(|𝑠𝑠𝑠𝑠𝑡𝑡 − 𝑐𝑐𝑠𝑠𝑖𝑖𝑡𝑡|),𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒
𝑡𝑡=𝑡𝑡𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖             (4) 

where ci denotes the i-th grid, 𝑠𝑠𝑠𝑠𝑡𝑡  denotes the azimuth 
measured at time t, and 𝑐𝑐𝑠𝑠𝑖𝑖𝑡𝑡 denotes the azimuth calculated 
with the position of the i-th grid and the aircraft position at time 
t. For each gird, the final probability is calculated by 
multiplying the probability calculated for each azimuth 
measured from a time-point tinit when the crossing area is 
determined to a time-point tend after 50 s. Moreover, the position 
where the probability is the highest among the grids in the 
candidate area is selected as the horizontal position of the radar. 
The radar’s altitude can be determined by the altitude value of 
the digital terrain elevation data (DTED) at the horizontal 
position. However, because of the presence of position 
identification error, a relatively low altitude may be 
misdetermined as the position of the radar, which causes an 
error that classifies majority of the area as hiding spaces during 
the spatial analysis. To solve this problem, we adjusted the 
altitude of the radar to the maximum altitude in the candidate 
area. Considering the safety of the aircraft, this is a measure for 

reducing the false-negative probability at the expense of true-
positive probability for the threat space judgment. 
 

2.6 Threat Space Analysis Function 
This section describes the threat space analysis by a newly 

identified radar threat. If the position of the radar threat is 
estimated by the position identification algorithm, the threat 
space is analyzed where the LOS can reach and the nonthreat 
space, which is occluded by the terrain, through the LOS 
analysis for the adjacent space of the related position. Figure 7 
shows an example of the radar’s threat space analysis, and the 
gray and dark gray areas represent the terrain and the non-threat 
space, respectively. R is the newly identified radar, for which 
the position is estimated, and P1 and P2 indicate the top of the 
terrain, respectively. Suppose the straight lines passing R–P1 
and R–P2 are L1 and L2, respectively. Then, the space higher 
than L1 and L2 becomes a threat space, which is visible to the 
radar, and the area between L1/L2 and the terrain becomes the 
non-threat space occluded by the terrain. 

Many studies, such as [14] and [15] have used the analysis 
method of LOS by radar; however, these methods are for the 
optimal radar placement. Indeed, although they can derive the 
result through precise analysis in a static environment, they 
require plenty of computation time. We implemented an LOS 
analysis algorithm based on a high-speed algorithm introduced 
in [16] for prompt analysis of threat spaces regarding a newly 
identified threat in a dynamic situation. 

The high-speed LOS analysis consisted of the procedures 
shown in Fig. 8. When the position of the new threat estimated 
by the position estimation algorithm and the sensor information 
are received, the terrain information around the estimated 
position is loaded on the memory. Here, the DTED altitude is 
used as terrain information. Figure 9 shows that the terrain 
information is divided into N groups to perform parallel 
computations for the threat space analysis, thereby reducing the 
total computation time. We applied N = 4 because the radar 
threat space analysis uses four central processing units on the 
mission computer equipped with the autonomous situational 
awareness software. The analysis speed of the terrain 
information was improved by analyzing the lowest terrain 
altitude in the boundary region instead of performing analysis 
for each altitude at each position. By using the intermediate 

Fig. 6 Selecting Candidate Area for 
Radar Localization 

Fig. 7 Example of Radar Threat Space Analysis 
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results in the analysis process as the threat analysis results at 
positions between the new radar and the boundary region, the 
redundant computations, and hence the required time were 
reduced at the computed position. Furthermore, to reduce the 
degradation of the parallel computing efficiency caused by the 
interference, the memory access was prevented for the adjacent 
terrain in the parallel computing process through the region 
division, as shown in Fig. 9.  
 

3. Validation of Autonomous Situational 
Awareness Software 

 

3.1 Validation Environment of the Autonomous 
Situational Awareness Software 

The environment for validation of the autonomous situational 

awareness software is shown in Fig. 10. The autonomous 
situational awareness software was loaded on the mission 
computer of an actual aircraft. In addition, the existing flight 
operation program was modified to interoperate with the 
autonomous situational awareness software. The integrated test 
environment is an environment where simulated flight tests are 
performed, interlinking with a mission computer. It consists of 
three main simulation functions as follows: 
⚫ Ground control equipment simulation: it comprises a 

mission plan and test scenario management function, a 
ground control equipment simulation function of the 
aircraft and an the integrated test environment  operation 
function including the UAV avionics and mission 
environment simulations. 

⚫ UAV Avionics simulation: it simulates the 
communication function and the functions of onboard 
equipment, including the data-links and RWR loaded on 
the aircraft to simulate and transmit the radar threat 
information, the aircraft position information, and the 
ground control equipment’s control commands to the 
mission computer. 

⚫ Mission environment simulation: it simulates the flight 
environment, other approaching aircraft, and ground-
based anti-aircraft radar threat based on a dynamic model. 
The anti-aircraft radar threat simulation includes 
functions that support the determination of detection by 
radar and the RWR detection by reflecting the positions 
and characteristics of the radar and the aircraft, and 
display the radar threats in the ground control equipment 
simulation. 

 

In the mission environment simulation, a radar model of 
system tool kit (STK) [17], that was a commercial system 
analysis tool, was used to simulate the radar threats. When the 
analysis is performed to determine whether the radar has 
detected by reflecting the positions, characteristics, and terrain 
shielding of the radars and the aircraft in the radar model of 
STK, the results are delivered to the mission computer through 
the RWR model of the UAV avionics simulation. Subsequently, 
the mission computer uses the data to perform the recognition, 
identification, and threat space analysis of the new radar threat. 

Fig. 9 Example of Region Division for Radar 
Threat Space Analysis 

Fig. 8 Flowchart for Radar Threat Space Analysis 

Fig. 10 Block Diagram of Evaluation Environment 



42 Yun-Geun Kim·Woohyuk Chang·Kwangmin Kim·Taegeun Oh  
 

 

 

 

The hardware specifications of the mission computer equipped 
with the autonomous situational awareness software were as 
follows: 
⚫ VPX3-C1: Intel Core i7-3612QE (2.1 GHz), 

8 GByte DDR3 SDRAM, 32 GB NAND Flash Drive 
⚫ GP107: NVIDIA QUADRO PASCAL GP107 GPU (768 

CUDA Cores), 4 GB GDDR5 Memory 
The mission area was set with a length of 749.1 km, a width 

of 1,223.7 km, and a height of 15.3 km for the validation of the 
developed software. Furthermore, the size of the spatial 
situation data was 495 MB. The level 2 DTED data were used 
after converting them into binary data in the threat analysis, 
whereas the size was 495 MB. For the radar threats, three radar 
types were assumed, and 100 radars were placed at arbitrary 
positions considering the terrain. When creating simulation 
scenarios, an arbitrary number of radars was selected and placed. 
The test was performed repeatedly for 100 simulation scenarios 
in the integrated test environment of the software configured as 
described above. Moreover, the new threat occurrences per 
scenario were set to three times. 
 

3.2 Situation Recognition Performance 
Three hundred radars were newly detected in 100 scenarios. 

Table 1 shows detection performance of the autonomous 
situational awareness software.  

 

Table 1 Performance of New Radar Detection 

Number of  
new radars 

detected 
Detections Misses Confusions False 

alarms 

300 294 0 6 0 

 
Detection refers to accurately identifying the presence of a 

new radar and the corresponding RWR ID, and miss is the 

number of times of missing the detection. Confusion is the 
number of times of a new radar being detected but identified 
with an incorrect RWR ID. False alarm refers to a case of false-
detecting a new radar even though it does not exist. The 
autonomous situational awareness software detected 294 out of 
300 new radars. Although there was no false alarm, the RWR 
ID was incorrectly determined for six radars. Fig. 11 shows that 
a new radar (no. 238) was recognized with an existing radar (no. 
220) simultaneously on the same line, but they were impossible 
to distinguish based on the direction detection accuracy of the 
RWR. However, when flying for position identification, they 
are sufficiently distinguishable because the UAV deviates from 
the same line as it moves. Therefore, we are planning to add a 
function to check for confusion during a position identification 
flight in the next study. 
 

3.3 Threat Identification Performance 
We used the position identification accuracy of new radars to 

analyze the threat identification performance of the autonomous 
situational awareness software. As the radar position 
identification error is proportional to the distance between the 
radar and the UAV, we calculated the mean identification error 
for each distance by dividing the distance between the radar and 
the UAV in 10 km units, as shown in Fig. 12. As expected, the 
identification error increased as the distance increased. The 
reason for the large error at 140 km is that the number of 
samples is small because the number of radars in the 
corresponding distance is four. By flying for 1 min, the position 

Fig. 11 Example of Confusion in Radar Detection 

Fig. 12 Radar Localization Error according to Distance 
between UAV and Radar 
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identification could be performed with a mean error of 6.2 km 
for the radars at 100 km distance.  

Because of performing a flight path re-planning based on the 
threat space analysis, the radar threats were avoided in all 
scenarios.  
 

3.4 Performance of the Threat Space Analysis 
Figure 13 shows an example result of the radar threat space 

analyzed using the developed algorithm for radar threat space 
analysis. The red and yellow areas represent a detection rate of 
80% and 60%, respectively. Furthermore, the analysis results 
show that there are areas occluded by the terrain. 

Table 2 shows the analysis time and accuracy of the 
developed radar threat space analysis algorithm. The developed 
algorithm was implemented to parallelize using four threads on 
the CPU and 768 CUDA cores on the CPU. The analysis time 
shows the time duration that the threat space was analyzed by 
receiving the information, including the estimated position. In 
addition, the accuracy was calculated by comparing to the radar 
threat simulation results obtained using the radar model of STK 
[17]. First, the analysis time shows that it was improved by 

approximately 48% through the GPU parallelization compared 
to the CPU parallelization. Although the analysis was 
performed for 656 ms (CPU) and 335 ms (GPU) on average, the 
threat space analysis algorithm, implemented in the embedded 
environment, showed an average accuracy of 94.94% and 
95.20%, respectively, compared to the radar simulation results 
of the STK, which takes more than 20 min on average. 
Therefore, the developed software can be used in dynamic 
mission environments. 
 

 

4. Conclusion 
 

UAVs are becoming increasingly important for executing 
dangerous military missions, such as enemy territory 
infiltration and reconnaissance on future battlefields. 
Furthermore, autonomous situational awareness technology 
allows UAVs to recognize the situation autonomously. It is 
essential to reduce the workload of operators and handle sudden 
situational changes. In this paper, we proposed a structure for 
the autonomous situational awareness software that performs 
threat recognition, identification, and analysis to recognize 
dynamic situational changes. That is, we proposed a structure, 
in which the threat recognition, identification, and analysis 
functions are activated according to the procedure under the 
control of the situational awareness management function to 
recognize the situation. We loaded the autonomous situational 
awareness software on a mission computer with the hardware 
specifications appropriate for an actual UAV and interlinked it 
with the integrated simulation environment to test the 
situational awareness performance for radar threats. The 
recognition, identification, and analysis were performed for 
radar threats in 100 scenarios. The results proved that 
situational awareness could be executed to avoid the radar 
threats, and re-plan the mission and the flight path. Furthermore, 
the parallelization method using the GPU was applied to 
shorten the threat analysis time. As the proposed software has a 
general-purpose structure, it can be used for a variety of threats, 
and the follow-up study will implement recognition, 
identification, analysis functions, and verify their performance 
for not only radar threats but also aerial threats, such as enemy 
manned/unmanned aerial vehicles or enemy ground threats, 
identified by image-based object recognition. 
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