DOI QR코드

DOI QR Code

PROJECTIONS AND SLICES OF MEASURES

  • Selmi, Bilel (Department of Mathematics Faculty of Sciences of Monastir University of Monastir) ;
  • Svetova, Nina (Institute of Mathematics and Information Technologies Petrozavodsk State University)
  • Received : 2020.06.25
  • Accepted : 2020.08.28
  • Published : 2021.04.30

Abstract

We consider a generalization of the Lq-spectrum with respect to two Borel probability measures on ℝn having the same compact support, and also study their behavior under orthogonal projections of measures onto an m-dimensional subspace. In particular, we try to improve the main result of Bahroun and Bhouri [4]. In addition, we are interested in studying the behavior of the generalized lower and upper Lq-spectrum with respect to two measures on "sliced" measures in an (n - m)-dimensional linear subspace. The results in this article establish relations with the Lq-spectrum with respect to two Borel probability measures and its projections and generalize some well-known results.

Keywords

References

  1. N. Attia and B. Selmi, Relative multifractal box-dimensions, Filomat 33 (2019), no. 9, 2841-2859. https://doi.org/10.2298/FIL1909841A
  2. N. Attia and B. Selmi, On the Billingsley dimension of Birkhoff average in the countable symbolic space, Comptes Rendus Math. 358 (2020), 255-265. https://doi.org/10.5802/crmath.21
  3. N. Attia, B. Selmi, and Ch. Souissi, Some density results of relative multifractal analysis, Chaos, Solitons & Fractals 103 (2017), 1-11. https://doi.org/10.1016/j.chaos.2017.05.029
  4. F. Bahroun and I. Bhouri, Multifractals and projections, Extracta Math. 21 (2006), no. 1, 83-91.
  5. J. Barral and I. Bhouri, Multifractal analysis for projections of Gibbs and related measures, Ergodic Theory Dynam. Systems 31 (2011), no. 3, 673-701. https://doi.org/10.1017/S0143385710000143
  6. F. Ben Nasr, Analyse multifractale de mesures, C. R. Acad. Sci. Paris Ser. I Math. 319 (1994), no. 8, 807-810.
  7. I. Bhouri, On the projections of generalized upper Lq-spectrum, Chaos, Solitons & Fractals 42 (2009), no. 3, 1451-1462. https://doi.org/10.1016/j.chaos.2009.03.056
  8. Z. Douzi and B. Selmi, Multifractal variation for projections of measures, Chaos, Solitons & Fractals 91 (2016), 414-420. https://doi.org/10.1016/j.chaos.2016.06.026
  9. Z. Douzi and B. Selmi, On the projections of mutual multifractal spectra, arXiv:1805.06866v1 (2018).
  10. Z. Douzi and B. Selmi, On the projections of the mutual multifractal Renyi dimensions, Anal. Theory Appl., (to appear). https://doi.org/10.4208/ata.OA-2017-0036
  11. K. J. Falconer, Sets with large intersection properties, J. London Math. Soc. (2) 49 (1994), no. 2, 267-280. https://doi.org/10.1112/jlms/49.2.267
  12. K. J. Falconer and J. D. Howroyd, Packing dimensions of projections and dimension profiles, Math. Proc. Cambridge Philos. Soc. 121 (1997), no. 2, 269-286. https://doi.org/10.1017/S0305004196001375
  13. K. J. Falconer and P. Mattila, The packing dimension of projections and sections of measures, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 4, 695-713. https://doi.org/10.1017/S0305004100074533
  14. K. J. Falconer and T. C. O'Neil, Convolutions and the geometry of multifractal measures, Math. Nachr. 204 (1999), 61-82. https://doi.org/10.1002/mana.19992040105
  15. Y. Heurteaux, Estimations de la dimension inferieure et de la dimension superieure des mesures, Ann. Inst. H. Poincare Probab. Statist. 34 (1998), no. 3, 309-338. https://doi.org/10.1016/S0246-0203(98)80014-9
  16. X. Hu and S. J. Taylor, Fractal properties of products and projections of measures in Rd, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 3, 527-544. https://doi.org/10.1017/S0305004100072285
  17. B. R. Hunt and V. Yu. Kaloshin, How projections affect the dimension spectrum of fractal measures, Nonlinearity 10 (1997), no. 5, 1031-1046. https://doi.org/10.1088/0951-7715/10/5/002
  18. E. Jarvenpaa and M. Jarvenpaa, Linear mappings and generalized upper spectrum for dimensions, Nonlinearity 12 (1999), no. 3, 475-493. https://doi.org/10.1088/0951-7715/12/3/003
  19. E. Jarvenpaa, M. Jarvenpaa, F. Ledrappier, and M. Leikas, One-dimensional families of projections, Nonlinearity 21 (2008), no. 3, 453-463. https://doi.org/10.1088/0951-7715/21/3/005
  20. E. Jarvenpaa, M. Jarvenpaa, and M. Llorente, Local dimensions of sliced measures and stability of packing dimensions of sections of sets, Adv. Math. 183 (2004), no. 1, 127-154. https://doi.org/10.1016/S0001-8708(03)00084-7
  21. E. Jarvenpaa, M. Jarvenpaa, and T. Keleti, Hausdorff dimension and non-degenerate families of projections, J. Geom. Anal. 24 (2014), no. 4, 2020-2034. https://doi.org/10.1007/s12220-013-9407-8
  22. M. Jarvenpaa and P. Mattila, Hausdorff and packing dimensions and sections of measures, Mathematika 45 (1998), no. 1, 55-77. https://doi.org/10.1112/S0025579300014042
  23. R. Kaufman, On Hausdorff dimension of projections, Mathematika 15 (1968), 153-155. https://doi.org/10.1112/S0025579300002503
  24. M. Khelifi, H. Lotfi, A. Samti, and B. Selmi, A relative multifractal analysis, Choas, Solitons & Fractals 140 (2020), 110091. https://doi.org/10.1016/j.chaos.2020.110091
  25. J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math. Soc. (3) 4 (1954), 257-302. https://doi.org/10.1112/plms/s3-4.1.257
  26. P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 227-244. https://doi.org/10.5186/aasfm.1975.0110
  27. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambrdige. (1995).
  28. S.-M. Ngai, A dimension result arising from the Lq-spectrum of a measure, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2943-2951. https://doi.org/10.1090/S0002-9939-97-03974-9
  29. L. Olsen, Multifractal geometry, in Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), 3-37, Progr. Probab., 46, Birkhauser, Basel.
  30. L. Olsen, Random Geometrically Graph Directed Self-Similar Multifractals, Pitman, London. (1994).
  31. T. C. O'Neil, The multifractal spectra of projected measures in Euclidean spaces, Chaos, Solitons & Fractals 11 (2000), no. 6, 901-921. https://doi.org/10.1016/S0960-0779(98)00256-2
  32. T. Orponen, On the packing measure of slices of self-similar sets, J. Fractal Geom. 2 (2015), no. 4, 389-401. https://doi.org/10.4171/JFG/26
  33. D. Preiss, Geometry of measures in Rn: distribution, rectifiability, and densities, Ann. of Math. (2) 125 (1987), no. 3, 537-643. https://doi.org/10.2307/1971410
  34. A. Rapaport, On the Hausdorff and packing measures of slices of dynamically defined sets, J. Fractal Geom. 3 (2016), no. 1, 33-74. https://doi.org/10.4171/JFG/29
  35. B. Selmi, A note on the effect of projections on both measures and the generalization of q-dimension capacity, Probl. Anal. Issues Anal. 5(23) (2016), no. 2, 38-51. https://doi.org/10.15393/j3.art.2016.3290
  36. B. Selmi, Multifractal dimensions for projections of measures, Bol. Soc. Paran. Mat. (to appear) https://doi.org/10.5269/bspm.44913
  37. B. Selmi, On the projections of the multifractal packing dimension for q > 1, Ann. Mat. Pura Appl. (4) 199 (2020), no. 4, 1519-1532. https://doi.org/10.1007/s10231-019-00929-7
  38. B. Selmi, On the effect of projections on the Billingsley dimensions, Asian-Eur. J. Math. 13 (2020), 2050128 (1-17). https://doi.org/10.1142/S1793557120501284
  39. B. Selmi, Projection estimates for mutual multifractal dimensions, J. Pure Appl. Math. Adv. Appl. 22 (2020), 71-89. https://doi.org/10.18642/jpamaa_7100122121
  40. B. Selmi and N. Yu. Svetova, On the projections of mutual Lq,t-spectrum, Probl. Anal. Issues Anal. 6(24) (2017), no. 2, 94-108. https://doi.org/10.15393/j3.art.2017.4231
  41. R. Tuula, Local dimensions of intersection measures: similarities, linear maps and continuously differentiable functions, https://www.acadsci.fi/mathematica/etheses/ripatti.pdf (2011).
  42. M. Zahle, The average fractal dimension and projections of measures and sets in ℝn, Fractals 3 (1995), no. 4, 747-754. https://doi.org/10.1142/S0218348X95000667