DOI QR코드

DOI QR Code

Current Status of Titanium Smelting Technology for Powder Metallurgy

분말야금을 위한 타이타늄 제련기술 현황

  • Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
  • Received : 2021.04.16
  • Accepted : 2021.04.27
  • Published : 2021.04.28

Abstract

Titanium is the ninth most abundant element in the Earth's crust and is the fourth most abundant structural metal after aluminum, iron, and magnesium. It exhibits a higher specific strength than steel along with an excellent corrosion resistance, highlighting the promising potential of titanium as a structural metal. However, titanium is difficult to extract from its ore and is classified as a rare metal, despite its abundance. Therefore, the production of titanium is exceedingly low compared to that of common metals. Titanium is conventionally produced as a sponge by the Kroll process. For powder metallurgy (PM), hydrogenation-dehydrogenation (HDH) of the titanium sponge or gas atomization of the titanium bulk is required. Therefore, numerous studies have been conducted on smelting, which replaces the Kroll process and produces powder that can be used directly for PM. In this review, the Kroll process and new smelting technologies of titanium for PM, such as metallothermic, electrolytic, and hydrogen reduction of TiCl4 and TiO2 are discussed.

Keywords

Acknowledgement

본 논문은 산업통상자원부의 산업기술혁신사업 중 산업핵심기술개발사업의 지원에 의해 연구되었으며, 이에 감사드립니다(과제번호: 10063143).

References

  1. W. Kroll: J. of The Franklin Institue, 260 (1955) 169. https://doi.org/10.1016/0016-0032(55)90727-4
  2. H. S. Sohn: Recycling of Common Metals, KNU Press, Daegu, (2020) 17.
  3. H. S. Sohn: J. of Korean Inst. of Resources Recycling, 29 (2020) 3.
  4. M. A. Hunter: J. Am. Chem. Soc., 32 (1910) 330. https://doi.org/10.1021/ja01921a006
  5. W. Kroll: Trans. Electrochem. Soc., 78 (1940) 35. https://doi.org/10.1149/1.3071290
  6. P. Sun, Z. Z. Fang, Y. Zhang and Y. Xia: JOM, 69 (2017) 1853. https://doi.org/10.1007/s11837-017-2513-5
  7. Z. Z. Fang, J. D. Paramore, P. Sun, K. S. Ravi Chandran, Y. Zhanga, Y. Xia, F. Cao, M. Koopman and M. Free: Int. Mater. Rev., 63 (2018) 407. https://doi.org/10.1080/09506608.2017.1366003
  8. H. S. Sohn: Resources Recycling, 30 (2021) 26. https://doi.org/10.7844/KIRR.2021.30.1.26
  9. A. Coggins: Titanium Metal-global Supply and Demand Trends Overview, Procd. of TITANIUM USA 2019, Mobile, AL, 25 Sept. 2019.
  10. O. Takeda and T. H. Okabe: JOM, 71 (2019) 1981. https://doi.org/10.1007/s11837-018-3278-1
  11. M. W. Yoon and H. S. Sohn: J. of Korean Inst. of Resources Recycling, 22 (2013) 1.
  12. T. Oishi, T. H. Okabe and K. Ono: Kekinzoku, 43 (1993) 392.
  13. M. Maeda, T. Yahata, K. Mitugi and T. Ikeda: JIM, 34 (1993) 599.
  14. S. Hassan-Pour, C. Vonderstein1, M. Achimovicova, V. Vogt, E. Gock and B. Friedrich: Metall. Mater. Eng., 21 (2015) 101. https://doi.org/10.30544/100
  15. G. M. Bedinger: Titanium, USGS 2016 Minerals Yearbook (2016) 79.
  16. R. O. Suzuki, K. Teranuma and K. Ono: Metall. Mater. Trans. B, 34B (2003) 287. https://doi.org/10.1007/s11663-003-0074-1
  17. T. H. Okabe: Keikinzoku, 55 (2005) 537.
  18. E. Ahmadi and R. O. Suzuki: Metall. Mater. Trans. B, 51B (2020) 140.
  19. R. Bolivar and B. A. Ramon: IJMET, 10 (2019) 272.
  20. G. Crowley: Adv. Mater. Processes, 161 (2003) 25.
  21. A. Kracke: Titanium Alloy Powder-Accelerating Demand for Years to Come, Procd. of Titanium USA 2018, ITA, Las Vegas, NV, 2018.
  22. David S. van Vuuren: Titanium Powder Metallurgy, Ma Qian and Francis H. (Sam) Froes (Ed.), Elsevier, (2015) 69.
  23. S. J. Oosthuizen and J. J. Swanepoel: Conference of the South African Advanced Materials Initiative (CoSAAMI-2018), Materials Science and Engineering, 430 (2018) 1. https://doi.org/10.1016/j.msea.2006.03.060
  24. V. Duz, V. S. Moxon, A. G. Klevtosv and V. Sukhoplyuyev: ADMA Process for Hydrogenated Titanium Powder Production, Procd. of Titanium 2013, Las Vegas NV, Oct. 6-9 (2013).
  25. V. S. Moxson, V. A. Duz, A. G. Klevtsov, V. D. Sukhoplyuyev, M. D. Sopka, Y. V. Shuvalov and M. Matviychuk: USA, US 9,067.264 B2 (2015).
  26. R. A. Cordes and A. Donaldson: Titanium Metal Powder Production by the Plasma Quenching Process, Final Technical Report DE-FC07-97ID13511, USA, (2000) 16.
  27. Y. Zhang, Z. Z. Fang, Y. Xia, P. Sun, B. V. Devener, M. Free, H. Lefler and S. Zheng: Chem. Eng. J., 308 (2017) 299. https://doi.org/10.1016/j.cej.2016.09.066
  28. H. Lefler, Z. Z. Fang, Y. Zhang, P. Sun and Y. Xia: Metall. Mater. Trans. B, 49B (2018) 2998.
  29. G. Z. Chen, D. J. Fray and T. W. Farthing: Nature, 407 (2000) 361. https://doi.org/10.1038/35030069
  30. T. H. Okabe: Keikinzoku, 55 (2005) 537.
  31. T. H. Okabe, C. Zheng and Y. Taninouchi: Metall. Mater. Trans. B, 49B (2018) 1056.
  32. C. Zheng, T. Ouchi, L. Kong, Y. Taninouchi and T. H. Okabe: Metall. Mater. Trans. B, 50B (2019) 1652.
  33. L. Kong, T. Ouchi, C. Zheng and T. H. Okabe: J. Electrochem. Soc., 166 (2019) E429. https://doi.org/10.1149/2.1011913jes
  34. W. V. Tonder: M.S. Thesis, SOUTH AFRICAN TITANIUM: Techno-Economic Evaluation of Alternatives to the Kroll Process, Stellenbosch Univ. South Africa, (2010) 108.