CORRIGENDUM TO “A DUAL ITERATIVE SUBSTRUCTURING METHOD WITH A SMALL PENALTY PARAMETER”, [J. KOREAN MATH. SOC. 54 (2017), NO. 2, 461–477]

CHANG-OCK LEE, EUN-HEE PARK, AND JONGHO PARK

Abstract. In this corrigendum, we offer a correction to [J. Korean Math. Soc. 54 (2017), No. 2, 461–477]. We construct a counterexample for the strengthened Cauchy–Schwarz inequality used in the original paper. In addition, we provide a new proof for Lemma 5 of the original paper, an estimate for the extremal eigenvalues of the standard unpreconditioned FETI-DP dual operator.

In the first and second authors’ previous work [4], the strengthened Cauchy–Schwarz inequality used for [4, Eq. (3.8)] is incorrect and consequently, the statement of [4, Lemma 4] needs to be corrected. We present a new proof for [4, Lemma 5], that does not use [4, Lemma 4]. All notations are adopted from the original paper [4].

In the paragraph containing [4, Eq. (3.8)], it was claimed that by deriving a strengthened Cauchy-Schwarz inequality in a similar way to Lemma 4.3 in [3], it is shown that there exists a constant γ such that

$$2\tilde{a}(v_I + v_\Delta, v_c) \geq -\gamma(\tilde{a}(v_I + v_\Delta, v_I + v_\Delta) + \tilde{a}(v_c, v_c)),$$

where $0 < \gamma < 1$ is independent of H and h. That is, the above inequality is true when there exists a constant γ such that

$$|\tilde{a}(v_I + v_\Delta, v_c)| \leq \gamma(\tilde{a}(v_I + v_\Delta, v_I + v_\Delta))^{1/2}(\tilde{a}(v_c, v_c))^{1/2},$$

where $0 < \gamma < 1$ is independent of h and H.

On the other hand, a specific function $w = w_I + w_c + w_\Delta$ can be constructed, for which γ approaches 1 as H decreases. In fact, it suffices to characterize such w_Δ because w_I and w_c in (1) are determined by w_Δ in terms of the discrete \tilde{a}-harmonic extension $H^c(w_\Delta)$.

Proposition 1. There is no γ ($0 < \gamma < 1$), independent of h and H, satisfying (1).

Received September 4, 2020; Accepted January 22, 2021.

2010 Mathematics Subject Classification. 65F10, 65N30, 65N55.

Key words and phrases. Domain decomposition, dual substructuring, FETI-DP.
Proof. Noting that $H^c(v_{\Delta})$ in X^c_h is $\tilde{a}(\cdot,\cdot)$-orthogonal to all the functions which vanish at the interface nodes except for the subdomain corners, we have that
\[
\tilde{a}(v_I + v_{\Delta}, v_c) = \tilde{a}(H^c(v_{\Delta}) - v_c, v_c) \\
= \tilde{a}(H^c(v_{\Delta}), v_c) - \tilde{a}(v_c, v_c) \\
= -\tilde{a}(v_c, v_c),
\]
which implies that for $\tilde{a}(v_I + v_{\Delta}, v_I + v_{\Delta}) \neq 0$, the estimate (1) is equivalent to
\[
(2) \quad \frac{\tilde{a}(v_c, v_c)}{\tilde{a}(v_I + v_{\Delta}, v_I + v_{\Delta})} \leq \gamma^2,
\]
where $\gamma < 1$ is independent of h and H.

Next, let us divide $\Omega = (0,1)^2$ into $1/H \times 1/H$ square subdomains with a side length H. Each subdomain is partitioned into $2 \times H/h \times H/h$ uniform right triangles. Associated with such a triangulation, we select the function w in X^c_h such that w is a conforming P_1 element function in each subdomain, and $w_{\Delta} = 1$ at all the nodes on the interface except for the subdomain corners. Then it is noted that w in X^c_h vanishes on $\partial \Omega$. Let us denote by $\{x_k\}$ the subdomain corners that are not on $\partial \Omega$. Hence, for w_c and w_I that are computed by the discrete harmonic extension of w_{Δ}, it is observed that
\[
(3a) \quad w_c = 1 \text{ at all } x_k, \\
(3b) \quad w_I = 1 \text{ in } \Omega_j \text{ for } \partial \Omega_j \cap \partial \Omega = \emptyset,
\]
which imply that
\[
(4) \quad w \equiv 1 \text{ in all subdomains whose boundary does not touch } \partial \Omega.
\]

Let us first estimate $\tilde{a}(w_c, w_c)$ in (2). Using (3a), we have that
\[
\tilde{a}(w_c, w_c) = (1/H - 1)^2 \sum_{k=1}^{(1/H - 1)^2} \tilde{a}(\phi_{c,k}, \phi_{c,k}) = 4 \left(\frac{1}{H} - 1\right)^2,
\]
where $\phi_{c,k}$ is the nodal basis function associated with x_k. We next look over $\tilde{a}(w_I + w_{\Delta}, w_I + w_{\Delta})$ based on the fact that, for $\partial \Omega_j \cap \partial \Omega = \emptyset$
\[
(5) \quad \tilde{a}_{\Omega_j}(w_I + w_{\Delta}, w_I + w_{\Delta}) = \int_{\Omega_j} |\nabla(w_I + w_{\Delta})|^2 dx = \int_{\Omega_j} |\nabla w_c|^2 dx = 4,
\]
which follows from (4). Hence it suffices to estimate $\tilde{a}_{\Omega_j}(w_I + w_{\Delta}, w_I + w_{\Delta})$ for the following two cases:
(i) only one of the edges of the subdomain Ω_j is on $\partial \Omega$.
(ii) two edges of the subdomain Ω_j are on $\partial \Omega$.

Here, the number of subdomains corresponding to the cases (i) and (ii) is $4 \left(\frac{1}{H} - 2\right)$ and 4, respectively. Let us take $H/h = 3$ to focus only on the
dependence of γ on either H or h. By finding the discrete local harmonic extensions for the cases (i) and (ii), it is computed directly that

\begin{equation}
\tilde{a}_{\Omega_j}(w_I + w_\Delta, w_I + w_\Delta) = \begin{cases}
\frac{17}{4} & \text{for the case (i)}, \\
\frac{14}{4} & \text{for the case (ii)}.
\end{cases}
\end{equation}

Then by using (5) and (6), it follows that

\begin{equation}
\tilde{a}(w_I + w_\Delta, w_I + w_\Delta) = \left(\sum_{j \text{ for } \partial \Omega_j \cap \partial \Omega = \emptyset} + \sum_{j \text{ for } \partial \Omega_j \cap \partial \Omega \neq \emptyset} \right) \tilde{a}_{\Omega_j}(w_I + w_\Delta, w_I + w_\Delta)
= 4 \left(\frac{1}{H} - 2 \right)^2 + 17 \left(\frac{1}{H} - 2 \right) + 14.
\end{equation}

Finally, from (3a) and (7), it is confirmed that for a function w given above,

\begin{equation}
\lim_{H \to 0} \frac{\tilde{a}(w_c, w_c)}{\tilde{a}(w_I + w_\Delta, w_I + w_\Delta)} = 1,
\end{equation}

which implies that (2) does not hold. Therefore, the proof is completed. \(\square\)

In [4, Lemma 5], the extremal eigenvalues of the FETI-DP dual operator $F = B_\Delta S^{-1} B_\Delta^T$ were estimated using [4, Lemma 4]. Since [4, Lemma 4] is incorrect, we provide a new estimate for F that does not utilize [4, Lemma 4].

We assume that each subdomain Ω_j is the union of elements in a conforming coarse mesh T_H of Ω. First, we consider the following Poincaré-type inequality that generalizes [4, Proposition 3].

Lemma 2. For any $v_j \in X^j_h$, let $I^H_j v_j$ be the linear coarse interpolation of v_j such that $I^H_j v_j = v_j$ at vertices of a subdomain $\Omega_j \subset \mathbb{R}^d$. Then we have

\begin{equation}
|v_j|^2_{H^1(\Omega_j)} \lesssim \begin{cases}
H^{-1} \left(1 + \ln \frac{H}{h} \right)^{-1} \|v_j - I^H_j v_j\|_{L^2(\partial \Omega_j)}^2 & \text{for } d = 2, \\
h^{-1} \left(\frac{H}{h} \right)^{-2} \|v_j - I^H_j v_j\|_{L^2(\partial \Omega_j)}^2 & \text{for } d = 3.
\end{cases}
\end{equation}

Proof. Note that both sides of the above inequality do not change if a constant is added to v_j. Without loss of generality, we assume that v_j has the zero average, so that the following Poincaré inequality holds:

\begin{equation}
\|v_j\|_{H^1(\Omega_j)} \lesssim |v_j|_{H^1(\Omega_j)},
\end{equation}

where $\| \cdot \|_{H^1(\Omega_j)}$ is the weighted H^1-norm on Ω_j given by

$$
\|v_j\|^2_{H^1(\Omega_j)} = |v_j|^2_{H^1(\Omega_j)} + \frac{1}{H^2} \|v_j\|^2_{L^2(\Omega_j)}.
$$
Since $I_H^j v_j$ attains its extremum at vertices, we have
\[
\|v_j - I_H^j v_j\|_{L^2(\partial \Omega_j)} \lesssim H^{d-1} \|v_j - I_H^j v_j\|_{L^\infty(\partial \Omega_j)} \leq H^{d-1} \left(\|v_j\|_{L^\infty(\partial \Omega_j)} + \|I_H^j v_j\|_{L^\infty(\partial \Omega_j)} \right) \lesssim H^{d-1} \|v_j\|_{L^\infty(\partial \Omega_j)}.
\]
(9)

Let $H_j v_j$ be the generalized harmonic extension of $v_j|_{\partial \Omega_j}$ introduced in [7] such that
\[
(H_j v_j) = v_j \text{ on } \partial \Omega_j
\]
and
\[
\|H_j v_j\|_{H^1(\Omega_j)} = \min_{w_j \in H^1(\Omega_j)} \|w_j\|_{H^1(\Omega_j)} \text{ with } w_j = v_j \text{ on } \partial \Omega_j
\]
(10)

Then it follows that
\[
H^{d-1} \|v_j\|_{L^\infty(\partial \Omega_j)} \leq H^{d-1} \|H_j v_j\|_{L^\infty(\partial \Omega_j)} \lesssim C_d(H, h) \|v_j\|_{L^\infty(\partial \Omega_j)}
\]
(11a)
\[
\leq C_d(H, h) \|H_j v_j\|_{L^\infty(\partial \Omega_j)} \lesssim C_d(H, h) \|v_j\|_{H^1(\Omega_j)}
\]
(11b)
\[
\lesssim C_d(H, h) \|v_j\|_{H^1(\Omega_j)} \lesssim C_d(H, h) \|v_j\|_{H^1(\Omega_j)}
\]
(11c)

where
\[
C_d(H, h) = \begin{cases}
H \left(1 + \ln \frac{H}{h}\right) & \text{for } d = 2, \\
h \left(\frac{H}{h}\right)^2 & \text{for } d = 3,
\end{cases}
\]
and (11a) is due to the discrete Sobolev inequality [2, Lemma 2.3]. Also (10) and (8) are used in (11b) and (11c), respectively. Combination of (9) and (11) completes the proof. \qed

Note that Lemma 2 reduces to [4, Proposition 3] when v_j vanishes at vertices of Ω_j so that $I_H^j v_j = 0$. Using Lemma 2, we obtain the following estimate for F.

Proposition 3. For $F = B_\Delta S^{-1} B_\Delta^T$, we have
\[
C_F \lambda^T \lambda \lesssim \lambda^T F \lambda \lesssim \overline{C}_F \lambda^T \lambda \quad \forall \lambda,
\]
where
\[
C_F = h^{2-d} \text{ for } d = 2, 3,
\]
and
\[
\overline{C}_F = \begin{cases}
\left(\frac{H}{h}\right)^2 \left(1 + \ln \frac{H}{h}\right) & \text{for } d = 2, \\
h^{-1} \left(\frac{H}{h}\right)^2 & \text{for } d = 3.
\end{cases}
\]
Consequently, the condition number of F satisfies the following bound:
\[
\kappa(F) \lesssim \begin{cases}
\left(\frac{H}{h}\right)^2 \left(1 + \ln \frac{H}{h}\right) & \text{for } d = 2, \\
\left(\frac{H}{h}\right)^2 & \text{for } d = 3.
\end{cases}
\]
Proof. As the derivation of the maximum eigenvalue of S in the original paper [4] is correct, the derivation of C_F is also correct. Thus, we only estimate C_F in the following.

We first prove that

$$\left(B_\Delta v_\Delta \right)^T B_\Delta v_\Delta \lesssim C_F v_\Delta^T S v_\Delta \quad \forall v_\Delta.$$ \hspace{1cm} (12)

For v_Δ, we consider the discrete a-harmonic extension $v = H^c(v_\Delta)$. Let $w = v - I^H v$, where $I^H v$ is the linear coarse interpolation of v onto T^H such that $I^H v = v$ at the subdomain vertices. We write $w = w_I + w_\Delta$. Since $I^H v$ is continuous along Γ, we have $B_\Delta w_\Delta = B_\Delta v_\Delta$. Then it follows that

$$\left(B_\Delta v_\Delta \right)^T B_\Delta v_\Delta = \left(B_\Delta w_\Delta \right)^T (B_\Delta w_\Delta) \lesssim \sum_{j<k} \left\| w_j \left\| \Gamma_{jk} - w_k \right\| \Gamma_{jk} \right\|^2$$

where the last inequality is due to Lemma 2.

Then similar to [5, Theorem 4.4], we get the desired result as follows:

$$\lambda^T F \lambda = \max_{v_\Delta \neq 0} \frac{\left((B_\Delta v_\Delta)^T \lambda \right)^2}{v_\Delta^T S v_\Delta} \lesssim C_F \max_{\mu \neq 0} \frac{\left((B_\Delta v_\Delta)^T \lambda \right)^2}{\mu^T B_\Delta v_\Delta} \leq C_F \max_{\mu \neq 0} \frac{\left(\mu^T \lambda \right)^2}{\mu^T \mu} = C_F \lambda^T \lambda,$$

where we used [5, Lemma 4.3] in the first equality. Consequently, this completes the proof. \qed

It must be mentioned that the conclusion of Proposition 3 agrees with Lemma 5 of the original paper [4]. Since the conclusion of [4, Lemma 5] is true, it requires no additional correction in the remaining part of that paper.

For the sake of completeness, we present a correct estimate for the extremal eigenvalues of S that replaces [4, Lemma 4].
Proposition 4. For $S = A_{\Delta} - A_{\Delta}^T A_{\Delta}^{-1} A_{\Delta}$, we have
\[
C_S v_{\Delta}^T v_{\Delta} \lesssim v_{\Delta}^T S v_{\Delta} \lesssim C_S v_{\Delta}^T v_{\Delta}, \quad \forall v_{\Delta},
\]
where
\[
C_S = \begin{cases}
H h (1 + \ln \frac{H}{h})^{-1} & \text{for } d = 2, \\
h^3 & \text{for } d = 3,
\end{cases}
\]
and
\[
C_S = h^{d-2} \text{ for } d = 2, 3.
\]

Proof. Since the derivation of C_S in the original paper [4] is correct, we only consider an estimate for C_S. Take any v_{Δ} and its corresponding finite element function v_{Δ}. Let $v = \mathcal{H}(v_{\Delta})$ be the discrete \bar{a}-harmonic extension of v_{Δ}. Proceeding as in [6, Lemma 4.11], we get
\[
v_{\Delta}^T v_{\Delta} \lesssim h^{1-d} \sum_{j=1}^{N_{\Delta}} \|v_{\Omega_j}\|^2_{L^2(\Omega_j)}
\lesssim H h^{1-d} \sum_{j=1}^{N_{\Delta}} \left(\|v\|^2_{H^1(\Omega_j)} + H^{-2} \|v\|^2_{L^2(\Omega_j)}\right)
= H h^{1-d} v_{\Delta}^T S v_{\Delta} + H^{-1} h^{1-d} \|v\|^2_{L^2(\Omega)}.
\]
Note that we cannot apply the discrete Poincaré inequality [1, Lemma 5.1] in each subdomain Ω_j since $\mathcal{H} v_{\Delta}$ does not vanish at the subdomain vertices in general.

It remains to show that
\[
\|v\|^2_{L^2(\Omega)} \lesssim \begin{cases}
(1 + \ln \frac{H}{h}) v_{\Delta}^T S v_{\Delta} & \text{for } d = 2, \\
h^3 v_{\Delta}^T S v_{\Delta} & \text{for } d = 3,
\end{cases}
\]
for $d = 2$ and [6, Lemma 4.12] for $d = 3$, respectively. This completes the proof. \(\square\)
References

Chang-Ock Lee
DEPARTMENT OF MATHEMATICAL SCIENCES
KAIST
DAEJEON 34141, KOREA
Email address: colee@kaist.edu

Eun-Hee Park
DIVISION OF LIBERAL STUDIES
KANGWON NATIONAL UNIVERSITY
SAMCHOK 25913, KOREA
Email address: eh.park@kangwon.ac.kr

Jongho Park
DEPARTMENT OF MATHEMATICAL SCIENCES
KAIST
DAEJEON 34141, KOREA
Email address: jongho.park@kaist.ac.kr