Acknowledgement
이 논문은 2019년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. NRF-2019R1F1A1062348).
References
- Olshaker, J. S. and Jerrard, D. A., 1997, "The erythrocyte sedimentation rate." The Journal of emergency medicine, Vol. 15(6), pp. 869-874. https://doi.org/10.1016/S0736-4679(97)00197-2
- Stokes, G. G., 1851, "On the effect of the internal friction of fluids on the motion of pendulums."
- Jou, J. M., et al., 2011, "ICSH review of the measurement of the erythocyte sedimentation rate." International journal of laboratory hematology, Vol. 33(2), pp. 125-132. https://doi.org/10.1111/j.1751-553X.2011.01302.x
- Hardeman, M. R., et al., 2010, "Test 1 analyser for determination of ESR. 1. Practical evaluation and comparison with the Westergren technique.", Scandinavian journal of clinical and laboratory investigation, Vol 70(1), pp. 21-25. https://doi.org/10.3109/00365510903365952
- Curvers, J., et al., 2010, "Evaluation of the Ves-Matic Cube 200 erythrocyte sedimentation method: comparison with Westergren-based methods.", American journal of clinical pathology, Vol. 134(4), pp. 653-660. https://doi.org/10.1309/AJCPMEWW62BGQHJH
- Brunton, S. L., Noack, B. R. and Koumoutsakos, P., 2020, "Machine learning for fluid mechanics." Annual Review of Fluid Mechanics, Vol. 52, pp. 477-508. https://doi.org/10.1146/annurev-fluid-010719-060214
- Wu, W., et al. "Using gated recurrent unit network to forecast short-term load considering impact of electricity price." Energy Procedia, Vol. 158, pp. 3369-3374. https://doi.org/10.1016/j.egypro.2019.01.950
- Chung, J., et al., 2014, "Empirical evaluation of gated recurrent neural networks on sequence modeling." arXiv preprint arXiv: 1412.3555.
- Yang, S., Xueying Y., and Ying Z., 2020, "LSTM and GRU Neural Network Performance Comparison Study: Taking Yelp Review Dataset as an Example." 2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI). IEEE.
- Cheng, H. T., et al., 2016, "Wide & deep learning for recommender systems." Proceedings of the 1st workshop on deep learning for recommender systems, pp. 7-10.