DOI QR코드

DOI QR Code

A Research Trend on Diaphragm Membranes Alkaline Water Electrolysis System

알칼리 수전해용 격리막 기술 연구동향

  • Im, Kwang Seop (Department of materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Son, Tae Yang (Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Jeong, Ha Neul (Department of materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kwon, Dong Jun (Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of materials Engineering and Convergence Technology, Gyeongsang National University)
  • 임광섭 (경상국립대학교 나노신소재융합공학과) ;
  • 손태양 (경상국립대학교 그린에너지융합연구소) ;
  • 정하늘 (경상국립대학교 나노신소재융합공학과) ;
  • 권동준 (경상국립대학교 그린에너지융합연구소) ;
  • 남상용 (경상국립대학교 나노신소재융합공학과)
  • Received : 2021.04.22
  • Accepted : 2021.04.28
  • Published : 2021.04.30

Abstract

Alkaline water electrolysis system is the oldest technology among various hydrogen production processes to produce green hydrogen with the least amount of greenhouse gas generated. Alkaline water electrolysis (AWE) system is used in alkaline atmosphere condition. In comparison to polymer electrolyte membrane water electrolysis (PEMWE), this system can utilize stable transition metals such as nickel, cobalt, and silver, as electrode catalysts. AWE is relatively inexpensive, and can easily be scaled up to large scale. The system is a mature technology, as it has been in operation since the beginning of the 20th century in MW-scale for hydrogen generation, and there are currently more than 20 commercial manufacturers. In this review, the basic principles of AWE, along with catalysts, electrodes, and diaphragm membranes, are summarized. Particularly, the research and development trends of the diaphragm membrane unit, which is the core component of an AWE, are discussed in detail.

알칼리 수전해 시스템은 다양한 수소 생산 공정 중에서 가장 온실가스 발생량이 적은 그린 수소를 생산하는 방식 중 가장 오래된 기술이다. 알칼리 수전해 시스템은 알칼리 조건에서 사용되며, 고분자 전해질막 수전해와는 다르게 니켈, 코발트, 은 등의 안정한 전이금속을 전극촉매로 사용할 수 있다. 이 시스템은 가격이 저렴하고 대용량화가 용이하다는 장점을 가지고 있다. 이러한 장점으로 알칼리 수전해 시스템은 20세기 초부터 MW급 수소발생장치에 적용되어 왔으며 현재 20여 개의 제조업체에서 상용제품을 판매하고 있는 안정화된 기술이다. 본 논문에서는 알칼라인 수전해의 기본원리 및 사용되는 촉매, 전극, 격막 등에 대해 알아보고 그 중 핵심소재인 격막의 연구개발 동향에 대해 살펴보고자 한다.

Keywords

Acknowledgement

본 연구는 교육부(한국연구재단)의 지자체-대학 협력기반 지역혁신사업(경상남도 지역혁신플랫폼 스마트제조엔지니어링)과 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(과제번호: NRF-2020R1A6A1A03038697).

References

  1. B. H. Jeong, N. O. Kim, and K. Y. Lee, "A study on the performance analysis for the CPV module applying sphericalness lens", Trans. Korea Inst. Electr. Eng., 59, 3 (2010).
  2. J. H. Park, C. H. Kim, H. S. Cho, S. K. Kim, and W. C. Cho "Techno-economic analysis of green hydrogen production system based on renewable energy sources", Trans. Korean Hydrog. New Energy Soc., 31, 4 (2020).
  3. F. Dawood, M. Anda, and G. M. Shafiullah,. "Hydrogen production for energy: An overview", Int. J. Hydrog. Energy, 45, 7 (2020).
  4. K. S. Santhanam, R. J. Press, M. J. Miri, A. V. Bailey, and G. A. Takacs, "Introduction to hydrogen technology", John Wiley & Sons (2017).
  5. S. B. Han, "The trend of polymer electrolyte membrane water electrolysis", Prospectives of Industrial Chemistry, 21, 3 (2018).
  6. K. E. Ayers, E. B. Anderson, C. Capuano, B. Carter, L. Dalton, G. Hanlon, J. Manco, and M. Niedzwiecki, "Research advances towards low cost, high efficiency PEM electrolysis", ECS Transactions, 33, 3 (2010).
  7. M. M. Rashid, M. K. Mesfer, H. Naseem, and M. Danish, "Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis", Int. J. Engineer. & Adv. Tech., 4, 80 (2015).
  8. S. K. Woo, J. H. Yoo, and S. B. Moon, "High efficiency hydration", NICE, 27, 4 (2009).
  9. M. J. Lavorante, C. Y. Reynoso, and J. I. Franco, "Water electrolysis with Zirfon® as separator and NaOH as electrolyte", Desalination Water Treat., 56, 13 (2015).
  10. K. Moon and D. Pak, "The characteristics of hydrogen production according to electrode materials in alkaline water electrolysis", J. Energ. Eng., 24, 2 (2015).
  11. F. ezzahra Chakik, M. Kaddami, and M. Mikou, "Effect of operating parameters on hydrogen production by electrolysis of water", Int. J. Hydrog. Energy, 42, 40 (2017).
  12. G. Wang, Y. Weng, D. Chu, R. Chen, and D. Xie, "Developing a polysulfone-based alkaline anion exchange membrane for improved ionic conductivity", J. Membr. Sci., 332, 1 (2009). https://doi.org/10.1016/j.memsci.2009.01.024
  13. G. J. Hwang, K. S. Kang, H. J. Han, and J. W. Kim, "Technology trend for water electrolysis hydrogen production by the patent analysis", Trans. Korean Hydrog. New Energy Soc., 18, 1 (2007).
  14. K. Zeng and D. Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications", Prog. Energy Combust. Sci., 36, 3 (2010).
  15. J. Rodriguez, S. Palmas, M. Sanchez-Molina, E. Amores, L. Mais, and R. Campana, "Simple and precise approach for determination of Ohmic contribution of diaphragms in alkaline water electrolysis", Membr., 9, 10 (2019). https://doi.org/10.3390/membranes9010010
  16. H. Wendt and H. Hofmann, "Ceramic diaphragms for advanced alkaline water electrolysis", J. Appl. Electrochem., 19, 4 (1989).
  17. P. Fortin, T. Khoza, X. Cao, S. Y. Martinsen, A. O. Barnett, and S. Holdcroft, "High-performance alkaline water electrolysis using AemionTM anion exchange membranes", J. Power Sources, 451 (2020).
  18. D. Le Bideau, P. Mandin, M. Benbouzid, M. Kim, and M. Sellier, "Review of necessary thermophysical properties and their sensivities with temperature and electrolyte mass fractions for alkaline water electrolysis multiphysics modelling", Int. J. Hydrog. Energy, 44, 10 (2019).
  19. A. Manabe, M. Kashiwase, T. Hashimoto, T. Hayashida, A. Kato, K. Hirao, I. Shimomura, and I. Nagashimac, "Basic study of alkaline water electrolysis", Electrochim. Acta, 100, 249 (2013). https://doi.org/10.1016/j.electacta.2012.12.105
  20. D. Pletcher, X. Li, and S. Wang, "A comparison of cathodes for zero gap alkaline water electrolysers for hydrogen production", Int. J. Hydrog. Energy, 37, 9 (2012).
  21. J. W. Haverkort and H. Rajaei, "Voltage losses in zero-gap alkaline water electrolysis", J. Power Sources, 497, 229864 (2021).
  22. M. R. Kraglund, D. Aili, K. Jankova, E., Li, Q. Christensen, and J. O. Jensen, "Zero-gap alkaline water electrolysis using ion-solvating polymer electrolyte membranes at reduced KOH concentrations", J. Electrochem. Soc., 163, 11 (2016).
  23. H. I. Lee, D. T. Dung, J. Kim, J. H. Pak, S. k. Kim, H. S. Cho, W. C. Cho, and C. H. Kim, "The synthesis of a Zirfon-type porous separator with reduced gas crossover for alkaline electrolyzer", Int. J. Energy Res., 44, 3 (2020).
  24. P. Trinke, P. Haug, J. Brauns, B. Bensmann, R. Hanke-Rauschenbach, and T. Turek, "Hydrogen crossover in PEM and alkaline water electrolysis: Mechanisms, direct comparison and mitigation strategies", J. Electrochem. Soc., 165, 7 (2018).
  25. W. Doyen, W. Mues, W. Adriansens, B. Cobben, P. Haest, and R. Leysen, "New zirfon separator for alkaline water electrolysis", Report from VITO, Mortsel, Belgium (2008).
  26. J. Fischer, H. Hofmann, G. Luft, and H. Wendt, "Fundamental investigations and electrochemical engineering aspects concerning an advanced concept for alkaline water electrolysis", AIChE J., 26, 5 (1980).
  27. P. Vermeiren, W. Adriansens, J. P. Moreels, and R. Leysen, "Evaluation of the Zirfon® separator for use in alkaline water electrolysis and Ni-H2 batteries", Int. J. Hydrog. Energy, 23, 5 (1998)
  28. H. I. Lee, M. Mehdi, S. K. Kim, H. S. Cho, M. J. Kim, W. C. Cho, Y. W. Rhee, and C. H. Kim, "Advanced Zirfon-type porous separator for a high-rate alkaline electrolyser operating in a dynamic mode", J. Membr. Sci., 616, 118541 (2020). https://doi.org/10.1016/j.memsci.2020.118541
  29. L. Xu, Y. Yu, W. Li, Y. You, W. Xu, and S. Zhang, "The influence of manufacturing parameters and adding support layer on the properties of Zirfon® separators", Front. Chem. Sci. Eng., 8, 3 (2014).
  30. G. Modica, L. Giuffre, E. Montoneri, H. Wendt, and H. Hofmann, "Polyvinylpyridine-divinylbenzene and asbestos composites", Polymer, 25, 10 (1984).
  31. S. Seetharaman, S. Ravichandran, D. J. Davidson, S. Vasudevan, and G. Sozhan, "Polyvinyl alcohol based membrane as separator for alkaline water electrolyzer", Sep. Sci. Technol., 46, 10 (2011).
  32. H. Y. Jung, D. J. Yoon, J. H. Chung, and S. B. Moon, "High temperature water electrolysis of covalently cross-linked CL-SPEEK/Cs-TSiA/ceria composite membrane", Trans. Korean Hydrog. New Energy Soc., 28, 5 (2017).
  33. M. A. Song, S. I Ha, D. Y. Park, C. H. Ryu, S. B. Moon, A. S. Kang, and J. H. Chung, "The preparation and characteristics of covalently cross-linked SPEEK/Cs-TPA/ceria composite membrane for water electrolysis", Trans. Korean Hydrog. New Energy Soc., 23, 5 (2012).
  34. K. H. Lee, J. Y. Han, C. H. Ryu, and G. J. Hwang, "Preparation of an anion exchange membrane using the blending polymer of poly(ether sulfone)(PES) and poly(phenylene sulfide sulfone)(PPSS)", Membr. J., 29, 3 (2019).
  35. M. T. de Groot and A. W. Vreman, "Ohmic resistance in zero gap alkaline electrolysis with a Zirfon diaphragm", Electrochim. Acta, 369, 137684 (2021). https://doi.org/10.1016/j.electacta.2020.137684
  36. J. H. Park, S. Y. Bong, C. H. Ryu, and G. J. Hwang, "Study on the preparation of polyvinyl chloride anion exchange membrane as a separator in the alkaline water electrolysis", J. Membr. Sci., 23, 6 (2013).
  37. T. Y. Son, J. H. Kim, C. H. Park, and S. Y. Nam, "Preparation and characterization of hydrophilic aminated poly(styrene-ethylene-butylene-styrene) polymer membrane", Membr. J., 27, 4 (2017).
  38. S. Yun, X. Ma, H. Liu, and J. Hao, "Highly stable double crosslinked membrane based on poly(vinylbenzyl chloride) for anion exchange membrane fuel cell", Polym. Bull., 75, 11 (2018).
  39. B. S. Ko, J. Y. Sohn, Y. C. Nho, and J. H. Shin, "A study on the radiolytic synthesis of PVBC-grafted ETFE films and their quaternarization with diamines for the preparation of anion exchange membranes", J. Radiat. Ind., 5, 179 (2011). https://doi.org/10.23042/RADIN.2011.5.2.179
  40. B. S. Lee, S. K. Jung, and J. W. Rhim, "Preparation and characterization of the impregnation to porous membranes with PVA/PSSA-MA for fuel cell applications", Polymer, 35, 4 (2011). https://doi.org/10.1016/0032-3861(94)90040-X
  41. H. Zhang, B. Shi, R. Ding, H. Chen, J. Wang, and J. Liu, "Composite anion exchange membrane from quaternized polymer spheres with tunable and enhanced hydroxide conduction property", Ind. Eng. Chem. Res., 55, 33 (2016).
  42. C. Hu, Q. Zhang, H. Wu, X. Deng, Q. Yang, P. Liu, Y. Hong, A. Zhu, and Q. Liu, "Dual hydrophobic modifications toward anion exchange membranes with both high ion conductivity and excellent dimensional stability", J. Membr. Sci., 595, 117521 (2020).
  43. B. S. Lee, S. K. Jung, and J. W. Rhim, "Preparation and characterization of the impregnation to porous membranes with PVA/PSSA-MA for fuel cell applications", Polymer, 35, 4 (2011). https://doi.org/10.1016/0032-3861(94)90040-X
  44. H. Zhang, B. Shi, R. Ding, H. Chen, J. Wang, and J. Liu, "Composite anion exchange membrane from quaternized polymer spheres with tunable and enhanced hydroxide conduction property", Ind. Eng. Chem. Res., 55, 3 (2016). https://doi.org/10.1021/acs.iecr.5b02261