Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1A5A8018822).
References
- Y. Wang, W. Yang, P. Winter, and L. Walker, 2008, "Walk-through weighing of pigs using machine vision and an artificial neural network," Biosyst. Eng., vol. 100, no. 1, pp. 117-125. https://doi.org/10.1016/j.biosystemseng.2007.08.008
- V. Singh and R. Mishra, 2006, "Developing a machine vision system for spangle classification using image processing and artificial neural network," Surf. Coatings Technol., vol. 201, no. 6, pp. 2813-2817. https://doi.org/10.1016/j.surfcoat.2006.05.031
- N. Behroozi Khazaei, T. Tavakoli, H. Ghassemian, M. H. Khoshtaghaza, and A. Banakar, 2013, "Applied machine vision and artificial neural network for modeling and controlling of the grape drying process," Comput. Electron. Agric., vol. 98, pp. 205-213. https://doi.org/10.1016/j.compag.2013.08.010
- P. J. Toivanen, 1996, "New geodesic distance transforms for gray-scale images," Pattern Recognit. Lett., vol. 17, no. 5, pp. 437-450. https://doi.org/10.1016/0167-8655(96)00010-4
- J. Fridrich, M. Goljan, and R. Du, 2001, "Detecting LSB steganography in color and gray-scale images," IEEE Multimed., vol. 8, no. 4, pp. 22-28. https://doi.org/10.1109/93.959097
- M. D. Bloice, C. Stocker, and A. Holzinger, 2017, "Augmentor: An Image Augmentation Library for Machine Learning," arXiv, pp. 1-5.
- J. Wang and L. Perez, 2017, "The effectiveness of data augmentation in image classification using deep learning," arXiv.
- C. Shorten and T. M. Khoshgoftaar, 2019, "A survey on Image Data Augmentation for Deep Learning," J. Big Data, vol. 6, no. 1.
- W. S. Noble, 2006, "What is a support vector machine?," Nat. Biotechnol., vol. 24, no. 12, pp. 1565-1567. https://doi.org/10.1038/nbt1206-1565
- A. Widodo and B. S. Yang, 2007, "Support vector machine in machine condition monitoring and fault diagnosis," Mech. Syst. Signal Process., vol. 21, no. 6, pp. 2560-2574. https://doi.org/10.1016/j.ymssp.2006.12.007
- K. Q. Shen, C. J. Ong, X. P. Li, and E. P. V. Wilder-Smith, 2008, "Feature selection via sensitivity analysis of SVM probabilistic outputs," Mach. Learn., vol. 70, no. 1, pp. 1-20.
- J. G. Moreno-Torres, J. A. Saez, and F. Herrera, 2012, "Study on the impact of partition-induced dataset shift on k-fold cross-validation," IEEE Trans. Neural Networks Learn. Syst., vol. 23, no. 8, pp. 1304-1312. https://doi.org/10.1109/TNNLS.2012.2199516
- J. D. Rodriguez, A. Perez, and J. A. Lozano, 2010, "Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 3, pp. 569-575. https://doi.org/10.1109/TPAMI.2009.187