DOI QR코드

DOI QR Code

AN APPLICATION OF A GENERALIZED NéMETH FIXED POINT THEOREM IN HADAMARD MANIFOLDS

  • Kim, Won Kyu (Department of Mathematics Education Chungbuk National University)
  • Received : 2020.10.20
  • Accepted : 2021.01.01
  • Published : 2021.05.15

Abstract

In this paper, as an application of a multivalued generalization of the Németh fixed point theorem, we will prove a new existence theorem of Nash equilibrium for a generalized game 𝓖 = (Xi; Ai, Pi)i∈I with geodesic convex values in Hadamard manifolds.

Keywords

Acknowledgement

The author would like to thank the referees for the careful reading of this paper and helpful comments.

References

  1. E. G. Begle, A fixed point theorem, Ann. Math., 51 (1950), 544-550. https://doi.org/10.2307/1969367
  2. V. Colao, G. Lopez, G. Marino and V. Martin-Marquez, Equilibrium problems in Hadamard manifolds, J. Math. Anal. Appl., 388 (2012), 61-77. https://doi.org/10.1016/j.jmaa.2011.11.001
  3. X. P. Ding, W. K. Kim, and K. K. Tan, Equilibria of non-compact generalized games with L*-majorized preferences, J. Math. Anal. Appl., 164 (1992), 508-517. https://doi.org/10.1016/0022-247x(92)90130-6
  4. W. K. Kim, A multi-valued generalization of Nemeth's fixed point theorem, Appl. Math. Sci., 9 (2015), 37-44.
  5. W. K. Kim, Fan-Browder type fixed point theorems and applications in Hadamard manifolds, Nonlinear Funct. Anal. Appl., 23 (2018), 117-127. https://doi.org/10.22771/NFAA.2018.23.01.09
  6. W. K. Kim, An application of the Begle fixed point theorem, Far East J. Math. Sci., 104 (2018), 65-76. https://doi.org/10.17654/ms104010065
  7. W. K. Kim, Equilibrium existence theorems in Hadamard manifolds, Nonlinear Funct. Anal. Appl., 24 (2019), 325-335.
  8. A. Kristaly, Location of Nash equilibria: a Riemannian geometrical approach, Proc. Amer. Math. Soc., 138(2010), 1803-1810. https://doi.org/10.1090/S0002-9939-09-10145-4
  9. A. Kristaly, Nash-type equilibria on Riemannian manifolds: a variational approach, J. Math. Pures Appl., 101 (2014), 660-688. https://doi.org/10.1016/j.matpur.2013.10.002
  10. A. Kristaly, C. Li, G. Lopez, and A. Nicolae, What do 'convexities' imply on Hadamard manifolds? 2014: http://arxiv.org/pdf/1408.0591v1.pdf.
  11. S.L. Li, C. Li, Y.C. Liou, and J.-C. Yao, Existence of solutions for variational inequalities on Riemannian manifolds, Nonlinear Anal., 71 (2009), 5695-5706. https://doi.org/10.1016/j.na.2009.04.048
  12. S.Z. Nemeth, Variational inequalities on Hadamard manifolds, Nonlinear Anal., 52 (2003), 1491-1498. https://doi.org/10.1016/S0362-546X(02)00266-3
  13. K. K. Tan and X. Z. Yuan, Lower semicontinuity of multivalued mappings and equilibrium points, Proceedings of the First World Congress of Nonlinear Analysis, Tampa, FL. 1992, Walter de Gruyter, New York, 1996, pp. 1849-1860.
  14. C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds, Mathematics and Its Applications. 297 (1994), Kluwer Academic Publishers, Dordrecht.