DOI QR코드

DOI QR Code

GLOBAL AXISYMMETRIC SOLUTIONS TO THE 3D NAVIER-STOKES-POISSON-NERNST-PLANCK SYSTEM IN THE EXTERIOR OF A CYLINDER

  • Zhao, Jihong (School of Mathematics and Information Science Baoji University of Arts and Sciences)
  • Received : 2020.06.18
  • Accepted : 2021.02.09
  • Published : 2021.05.31

Abstract

In this paper we prove global existence and uniqueness of axisymmetric strong solutions for the three dimensional electro-hydrodynamic model based on the coupled Navier-Stokes-Poisson-Nernst-Planck system in the exterior of a cylinder. The key ingredient is that we use the axisymmetry of functions to derive the Lp interpolation inequalities, which allows us to establish all kinds of a priori estimates for the velocity field and charged particles via several cancellation laws.

Keywords

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (no. 11961030) and the Natural Science Foundation of Shaanxi Province (no. 2018JM1004).

References

  1. K. Abe and G. Seregin, Axisymmetric flows in the exterior of a cylinder, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 4, 1671-1698. https://doi.org/10.1017/prm.2018.121
  2. H. Abidi, Resultats de regularite de solutions axisymetriques pour le systeme de NavierStokes, Bull. Sci. Math. 132 (2008), no. 7, 592-624. https://doi.org/10.1016/j.bulsci.2007.10.001
  3. J. Fan, F. Li, and G. Nakamura, Regularity criteria for a mathematical model for the deformation of electrolyte droplets, Appl. Math. Lett. 26 (2013), no. 4, 494-499. https://doi.org/10.1016/j.aml.2012.12.003
  4. J. Fan, G. Nakamura, and Y. Zhou, On the Cauchy problem for a model of electrokinetic fluid, Appl. Math. Lett. 25 (2012), no. 1, 33-37. https://doi.org/10.1016/j.aml.2011.07.004
  5. E. Hopf, Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951), 213-231. https://doi.org/10.1002/mana.3210040121
  6. J. W. Jerome, Analytical approaches to charge transport in a moving medium, Transport Theory Statist. Phys. 31 (2002), no. 4-6, 333-366. https://doi.org/10.1081/TT120015505
  7. J. W. Jerome, The steady boundary value problem for charged incompressible fluids: PNP/Navier-Stokes systems, Nonlinear Anal. 74 (2011), no. 18, 7486-7498. https://doi.org/10.1016/j.na.2011.08.003
  8. J. W. Jerome and R. Sacco, Global weak solutions for an incompressible charged fluid with multi-scale couplings: initial-boundary-value problem, Nonlinear Anal. 71 (2009), no. 12, e2487-e2497. https://doi.org/10.1016/j.na.2009.05.047
  9. O. A. Ladyzenskaja, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968), 155-177.
  10. O. A. Ladyzenskaja, The mathematical theory of viscous incompressible flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York, 1969.
  11. S. Leonardi, J. Malek, J. Necas, and M. Pokorny, On axially symmetric flows in R3, Z. Anal. Anwendungen 18 (1999), no. 3, 639-649. https://doi.org/10.4171/ZAA/903
  12. J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), no. 1, 193-248. https://doi.org/10.1007/BF02547354
  13. H. Ma, Global large solutions to the Navier-Stokes-Nernst-Planck-Poisson equations, Acta Appl. Math. 157 (2018), 129-140. https://doi.org/10.1007/s10440-018-0167-0
  14. I. Rubinstein, Electro-diffusion of ions, SIAM Studies in Applied Mathematics, 11, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. https://doi.org/10.1137/1.9781611970814
  15. R. J. Ryham, Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electrohydrodynamics, arXiv:0910.4973v1.
  16. M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, Math. Models Methods Appl. Sci. 19 (2009), no. 6, 993-1015. https://doi.org/10.1142/S0218202509003693
  17. M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech. 32 (1968), 52-61. https://doi.org/10.1016/0021-8928(68)90147-0
  18. J. Zhao, C. Deng, and S. Cui, Well-posedness of a dissipative system modeling electrohydrodynamics in Lebesgue spaces, Differ. Equ. Appl. 3 (2011), no. 3, 427-448. https://doi.org/10.7153/dea-03-27
  19. J. Zhao and Q. Liu, Well-posedness and decay for the dissipative system modeling electro-hydrodynamics in negative Besov spaces, J. Differential Equations 263 (2017), no. 2, 1293-1322. https://doi.org/10.1016/j.jde.2017.03.015
  20. J. Zhao, T. Zhang, and Q. Liu, Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space, Discrete Contin. Dyn. Syst. 35 (2015), no. 1, 555-582. https://doi.org/10.3934/dcds.2015.35.555