DOI QR코드

DOI QR Code

ADDITIVE MAPS OF SEMIPRIME RINGS SATISFYING AN ENGEL CONDITION

  • Lee, Tsiu-Kwen (Department of Mathematics National Taiwan University) ;
  • Li, Yu (School of Mathematics and Statistics Southwest University) ;
  • Tang, Gaohua (School of Sciences Beibu Gulf University)
  • Received : 2020.05.21
  • Accepted : 2020.11.02
  • Published : 2021.05.31

Abstract

Let R be a semiprime ring with maximal right ring of quotients Qmr(R), and let n1, n2, …, nk be k fixed positive integers. Suppose that R is (n1+n2+⋯+nk)!-torsion free, and that f : 𝜌 → Qmr(R) is an additive map, where 𝜌 is a nonzero right ideal of R. It is proved that if [[…[f(x), xn1], …], xnk] = 0 for all x ∈ 𝜌, then [f(x), x] = 0 for all x ∈ 𝜌. This gives the result of Beidar et al. [2] for semiprime rings. Moreover, it is also proved that if R is p-torsion, where p is a prime integer with p = Σki=1 ni and if f : R → Qmr(R) is an additive map satisfying [[…[f(x), xn1], …], xnk] = 0 for all x ∈ R, then [f(x), x] = 0 for all x ∈ R.

Keywords

Acknowledgement

The work of G. H. Tang was supported by the national natural science foundation of China (11661014, 11961050, 11661013), the work of T.-K. Lee was supported in part by the Ministry of Science and Technology of Taiwan (MOST 107-2115-M-002-018-MY2).

References

  1. K. I. Beidar, On functional identities and commuting additive mappings, Comm. Algebra 26 (1998), no. 6, 1819-1850. https://doi.org/10.1080/00927879808826241
  2. K. I. Beidar, Y. Fong, P. Lee, and T. Wong, On additive maps of prime rings satisfying the Engel condition, Comm. Algebra 25 (1997), no. 12, 3889-3902. https://doi.org/10.1080/00927879708826093
  3. K. I. Beidar, W. S. Martindale, III, and A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, 196, Marcel Dekker, Inc., New York, 1996.
  4. M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), no. 2, 385-394. https://doi.org/10.1006/jabr.1993.1080
  5. M. Bresar, Applying the theorem on functional identities, Nova J. Math. Game Theory Algebra 4 (1996), no. 1, 43-54.
  6. M. Bresar, Commuting maps: a survey, Taiwanese J. Math. 8 (2004), no. 3, 361-397. https://doi.org/10.11650/twjm/1500407660
  7. M. Bresar and B. Hvala, On additive maps of prime rings. II, Publ. Math. Debrecen 54(1999), no. 1-2, 39-54.
  8. M. Chacron, Commuting involution, Comm. Algebra 44 (2016), no. 9, 3951-3965. https://doi.org/10.1080/00927872.2015.1087546
  9. M. Chacron, Involution satisfying an Engel condition, Comm. Algebra 44 (2016), no. 12, 5058-5073. https://doi.org/10.1080/00927872.2015.1130145
  10. M. Chacron and T.-K. Lee, Open questions concerning antiautomorphisms of division rings with quasi-generalized Engel conditions, J. Algebra Appl. 18 (2019), no. 9, 1950167, 11 pp. https://doi.org/10.1142/S0219498819501676
  11. A. Fosner and N. U. Rehman, Identities with additive mappings in semiprime rings, Bull. Korean Math. Soc. 51 (2014), no. 1, 207-211. https://doi.org/10.4134/BKMS.2014.51.1.207
  12. M. Fosner, N. U. Rehman, and J. Vukman, An Engel condition with an additive mapping in semiprime rings, Proc. Indian Acad. Sci. Math. Sci. 124 (2014), no. 4, 497-500. https://doi.org/10.1007/s12044-014-0205-4
  13. M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices. II, Duke Math. J. 27 (1960), 21-31. http://projecteuclid.org/euclid.dmj/1077468913 https://doi.org/10.1215/S0012-7094-60-02702-2
  14. I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331-341. https://doi.org/10.2307/1992920
  15. H. G. Inceboz, M. T. Ko,san, and T.-K. Lee, m-power commuting maps on semiprime rings, Comm. Algebra 42 (2014), no. 3, 1095-1110. https://doi.org/10.1080/00927872.2012.731623
  16. N. Jacobson, PI-algebras, Lecture Notes in Mathematics, Vol. 441, Springer-Verlag, Berlin, 1975.
  17. T.-K. Lee, Semiprime rings with hypercentral derivations, Canad. Math. Bull. 38 (1995), no. 4, 445-449. https://doi.org/10.4153/CMB-1995-065-2
  18. T.-K. Lee, Anti-automorphisms satisfying an Engel condition, Comm. Algebra 45 (2017), no. 9, 4030-4036. https://doi.org/10.1080/00927872.2016.1255894
  19. T.-K. Lee, Ad-nilpotent elements of semiprime rings with involution, Canad. Math. Bull. 61 (2018), no. 2, 318-327. https://doi.org/10.4153/CMB-2017-005-3
  20. T.-K. Lee and T.-C. Lee, Commuting additive mappings in semiprime rings, Bull. Inst. Math. Acad. Sinica 24 (1996), no. 4, 259-268.
  21. T.-K. Lee, K.-S. Liu, and W.-K. Shiue, n-commuting maps on prime rings, Publ. Math. Debrecen 64 (2004), no. 3-4, 463-472.
  22. P.-K. Liau and C.-K. Liu, On automorphisms and commutativity in semiprime rings, Canad. Math. Bull. 56 (2013), no. 3, 584-592. https://doi.org/10.4153/CMB-2011-185-5
  23. C.-K. Liu, An Engel condition with automorphisms for left ideals, J. Algebra Appl. 13 (2014), no. 2, 1350092, 14 pp. https://doi.org/10.1142/S0219498813500928
  24. C.-K. Liu, Additive n-commuting maps on semiprime rings, Proc. Edinb. Math. Soc. (2) 63 (2020), no. 1, 193-216. https://doi.org/10.1017/s001309151900018x
  25. W. S. Martindale, III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584. https://doi.org/10.1016/0021-8693(69)90029-5
  26. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.2307/2032686
  27. L. Rowen, Some results on the center of a ring with polynomial identity, Bull. Amer. Math. Soc. 79 (1973), 219-223. https://doi.org/10.1090/S0002-9904-1973-13162-3