DOI QR코드

DOI QR Code

A Study on the Dynamics of Dissolved Organic Matter Associated with Ambient Biophysicochemical Factors in the Sediment Control Dam (Lake Youngju)

영주댐 유사조절지 상류의 용존유기물 (Dissolved Organic Matter) 특성과 물리·화학 및 생물학적 환경 요인과의 연관성 연구

  • Oh, Hye-Ji (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Kim, Dokyun (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Choi, Jisoo (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Chae, Yeon-Ji (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Oh, Jong Min (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Shin, Kyung-Hoon (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Choi, Kwangsoon (K-water Institute) ;
  • Kim, Dong-Kyun (K-water Institute) ;
  • Chang, Kwang-Hyeon (Department of Environmental Science and Engineering, Kyung Hee University)
  • Received : 2021.12.07
  • Accepted : 2021.12.17
  • Published : 2021.12.31

Abstract

A sediment control dam is an artificial structure built to prolong sedimentation in the main dam by reducing the inflow of suspended solids. These dams can affect changes in dissolved organic matter (DOM) in the water body by changing the river flow regime. The main DOM component for Yeongju Dam sediment control of the Naeseongcheon River was analyzed through 3D excitation-emission matrix (EEM) and parallel factor (PARAFAC) analyses. As a result, four humic-like components (C1~C3, C5), and three proteins, tryptophan-like components (C2, C6~C7) were detected. Among DOM components, humic-like components (autochthonous: C1, allochthonous: C2~C3) were found to be dominant during the sampling period. The total amount of DOM components and the composition ratio of each component did not show a difference for each depth according to the amount of available light (100%, 12%, and 1%). Throughout the study period, the allochthonous organic matter was continuously decomposing and converting into autochthonous organic matter; the DOM indices (fluorescence index, humification index, and freshness index) indicated the dominance of autochthonous organic matter in the river. Considering the relative abundance of cyanobacteria and that the number of bacteria cells and rotifers increased as autochthonous organic matter increased, it was suggested that the algal bloom and consequent activation of the microbial food web was affected by the composition of DOM in the water body. Research on DOM characteristics is important not only for water quality management but also for understanding the cycling of matter through microbial food web activity.

유사조절지는 하천 하류로 이동하는 모래 등을 조절하기 위해 설치된 인공 횡단구조물로, 하천의 유황을 변화시켜 수체 내 용존유기물질 변화에 영향을 줄 수 있다. 내성천 상류의 영주댐 유사조절지를 대상으로 3차원 형광 EEM (Excitation-Emission Matrix) 및 PARAFAC 분석(Parallel Factor Analysis) 기법을 통해 수중 용존유기물의 주요 성분을 분석한 결과, 4개의 휴믹 유사계열 성분(C1-C3, C5)과 3개의 단백질-트립토판 유사계열 성분(C2, C6-C7)이 검출되었으며 이 중 내·외부로부터 기원된 휴믹계물질(C1-C3)이 주를 이루는 것으로 나타났다. 유기물 성분의 총량과 성분별 조성비는 유광층 내 광량에 따른 수심별 차이를 보이지 않았다. 영주댐 유사조절지에서는 유입된 외부 유기물이 지속적으로 분해되어 내부 유기물로 전환되며 이로 인해 유기물 지수는 조사기간 중 내부 기원 유기물의 우점을 나타냈다. 수체 내 내부 기원 유기물의 증가는 식물플랑크톤 현존량, 특히 남조류의 상대풍부도 및 박테리아와 윤충류 현존량의 증가와 연동되는 경향을 보여 수체 내 부영양화로 인한 녹조 발생은 미생물 먹이망 활성화와 밀접한 관계를 가지는 것으로 나타났다. 수중 유기물 특성에 대한 연구는 물리·화학적 측면에서의 수질 관리뿐만 아니라 생물학적 환경 요인과의 관계 분석을 통해 동·식물플랑크톤을 포함한 미생물 먹이망을 통한 물질 순환 이해에도 중요한 것으로 사료된다.

Keywords

Acknowledgement

본 결과물은 수자원공사 용역과제 [댐저수지에서 조류의 1차생산력 및 영양염류 이용율 분석 연구(2019)]의 지원을 받아 연구되었습니다.

References

  1. Baker, A. 2001. Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers. Environmental Science & Technology 35(5): 948-953. https://doi.org/10.1021/es000177t
  2. Brandao, L.P., P.A. Staehr and J.F. Bezerra-Neto. 2016. Seasonal changes in optical properties of two contrasting tropical freshwater systems. Journal of Limnology 75(3): 508-519.
  3. Chen, W. and H.Q. Yu. 2021. Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. Water Research 190: 116759. https://doi.org/10.1016/j.watres.2020.116759
  4. Choi, J.Y. and D.H. Han. 2011. Development of water quality standard for TOC as organic matter index. Seoul Studies 12(3): 173-184.
  5. Choi, K., B. Kim, J.H. Park, Y.H. Kim and M. Jun. 2004. Temporal and vertical variability in the relationship among organic matter indices in a deep reservoir ecosystem. Lake and Reservoir Management 20(2): 130-1403. https://doi.org/10.1080/07438140409354357
  6. Cory, R.M. and D.M. Mcknight. 2005. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in DOM. Environmental Science & Technology 39: 8142-8149. https://doi.org/10.1021/es0506962
  7. Dainard, P.G., C. Gueguen, M. Yamamoto-Kawai, W.J. Williams and J.K. Hutchings. 2019. Interannual variability in the absorption and fluorescence characteristics of dissolved organic matter in the Canada Basin polar mixed waters. Journal of Geophysical Research: Oceans 124(7): 5258-5269. https://doi.org/10.1029/2018jc014896
  8. Fellman, J.B., E. Hood and R.G. Spencer. 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnology and Oceanography 55(6): 2452-2462. https://doi.org/10.4319/lo.2010.55.6.2452
  9. Fukuzaki, K., I. Imai, K. Fukushima, K.I. Ishii, S. Sawayama and T. Yoshioka. 2014. Fluorescent characteristics of dissolved organic matter produced by bloom-forming coastal phytoplankton. Journal of Plankton Research 36: 685-694. https://doi.org/10.1093/plankt/fbu015
  10. Gang, G.H., U. Lee, J.S. Kim and J.S. Park. 2015. Introduction for eco-friendly project of Yeongju multi-purpose Dam. Water for Future 48(9): 72-77.
  11. Goncalves-Araujo, R., C.A. Stedmon, B. Heim, I. Dubinenkov, A. Kraberg, D. Moiseev and A. Bracher. 2015. From fresh to marine waters: Characterization and fate of dissolved organic matter in the Lena River Delta Region, Siberia. Frontiers in Marine Science 2: 108.
  12. Hambly, A.C., E. Arvin, L.F. Pedersen, P.B. Pedersen, B. Seredynska-Sobecka and C.A. Stedmon. 2015. Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy. Water Research 83: 112-120. https://doi.org/10.1016/j.watres.2015.06.037
  13. Han, D.H. and J.Y. Choi. 2011. Selection of the optimum organic matter index for surface water quality management. Journal of Environmental Policy 10(4): 61-80. https://doi.org/10.17330/JOEP.10.4.201112.61
  14. Hosen, J.D., G.H. Allen, G. Amatuli, S. Breitmeyer, M.J. Cohen, B.C. Crump, Y.H. Lu, J.P. Payet, B.A. Poulin, A. Stubbins, B. Yoon and P.A. Raymond. 2021. River network travel time is correlated with dissolved organic matter composition in rivers of the contiguous United States. Hydrological Processes 35(5): e14124.
  15. Huguet, A., L. Vacher, S. Relexans, S. Saubusse, J.M. Froidefond and E. Parlanti. 2009. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry 40(6): 706-719. https://doi.org/10.1016/j.orggeochem.2009.03.002
  16. Hur, J., J.K. Shin and S.W. Park. 2006. Characterizing fluorescence properties of dissolved organic matter for water quality management of rivers and lakes. Journal of Korean Society of Environmental Engineers 28(9): 940-948.
  17. Jaffe, R., J.N. Boyer, X. Lu, N. Maie, C. Yang, N.M. Scully and S. Mock. 2004. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Marine Chemistry 84(3-4): 195-210. https://doi.org/10.1016/j.marchem.2003.08.001
  18. Kim, J.K., M. Shin, C. Jang, S. Jung and B. Kim. 2007. Comparison of TOC and DOC distribution and the oxidation efficiency of BOD and COD in several reservoirs and rivers in the Han River system. Journal of Korean Society on Water Quality 23(1): 72-80.
  19. Kim, W. 2017. Ecological monitoring for the management of sand-bed stream. Ecology and Resilient Infrastructure 4(1): 001-002. https://doi.org/10.17820/eri.2017.4.1.001
  20. Larson, J.H., P.C. Frost, M.A. Xenopoulos, C.J. Williams, A.M. Morales-Williams, J.M. Vallazza, J.C. Nelson and W.B. Richardson. 2014. Relationships between land cover and dissolved organic matter change along the river to lake transition. Ecosystems 17(8): 1413-1425. https://doi.org/10.1007/s10021-014-9804-2
  21. Lee, C.J., S.J. Chung and S.Y. Hwang. 2013. Study on the monitoring of the changes in landform and riparian vegetation of sand-bed stream before the dam construction: In the case of Naesung Stream before the dam construction. Water for Future 46(5): 120-127.
  22. Lee, M.H., C.L. Osburn, K.H. Shin and J. Hur. 2018. New insight into the applicability of spectroscopic indices for dissolved organic matter (DOM) source discrimination in aquatic systems affected by biogeochemical processes. Water Research 147: 164-176. https://doi.org/10.1016/j.watres.2018.09.048
  23. Lee, Y.J., S.Y. Ha, H. Jin and K.H. Shin. 2019. Algal contribution to the occurrence of refractory organic matter in Lake Paldand, South Korea: inferred from dual stable isotope (13C and 15N) tracer experiment. Korean Journal of Ecology and Environment 52(3): 192-201. https://doi.org/10.11614/KSL.2019.52.3.192
  24. Leenheer, J.A. and J.P. Croue. 2003. Peer reviewed: characterizing aquatic dissolved organic matter. Environmental Science & Technology 37(1): 18A-26A. https://doi.org/10.1021/es032333c
  25. Lescord, G.L., E.J. Emilson, T.A. Johnston, B.A. Branfireun and J.M. Gunn. 2018. Optical properties of dissolved organic matter and their relation to mercury concentrations in water and biota across a remote freshwater drainage basin. Environmental Science & Technology 52(6): 3344-3353. https://doi.org/10.1021/acs.est.7b05348
  26. Liu, D., Y. Du, S. Yu, J. Luo and H. Duan. 2020. Human activities determine quantity and composition of dissolved organic matter in lakes along the Yangtze River. Water Research 168: 115132. https://doi.org/10.1016/j.watres.2019.115132
  27. Marce, R., L. Verdura and N. Leung. 2021. Dissolved organic matter spectroscopy reveals a hot spot of organic matter changes at the river-reservoir boundary. Aquatic Sciences 83(4): 1-14. https://doi.org/10.1007/s00027-020-00757-5
  28. Morling, K., J. Raeke, N. Kamjunke, T. Reemtsma & J. Tittel. 2017. Tracing aquatic priming effect during microbial decomposition of terrestrial dissolved organic carbon in chemostat experiments. Microbial Ecology 74(3): 534-549. https://doi.org/10.1007/s00248-017-0976-0
  29. Murphy, K.R., A. Hambly, S. Singh, R.K. Henderson, A. Baker, R. Stuetz and S.J. Khan. 2011. Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model. Environmental Science & Technology 45(7): 2909-2916. https://doi.org/10.1021/es103015e
  30. Ohno, T. 2002. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environmental Science & Technology 36(4): 742-746. https://doi.org/10.1021/es0155276
  31. Park, M.H. and J. Hur. 2008. Changes in spectroscopic characteristics and Pyrene binding reactivities of dissolved organic matters by biodegradation. Journal of Korean Society of Environmental Engineers 30(9): 893-899.
  32. Parlanti, E., K. Worz, L. Geoffroy and M. Lamotte. 2000. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry 31: 1765-1781. https://doi.org/10.1016/S0146-6380(00)00124-8
  33. Parr, T.B., T. Ohno, C.S. Cronan and K.S. Simon. 2014. Com-PARAFAC: a library and tools for rapid and quantitative comparison of dissolved organic matter components resolved by Parallel Factor Analysis. Limnology and Oceanography: Methods 12(3): 114-125. https://doi.org/10.4319/lom.2014.12.114
  34. Porter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora 1. Limnology and Oceanography 25(5): 943-948. https://doi.org/10.4319/lo.1980.25.5.0943
  35. R Core Team. 2014. R: A language and environment for statistical computing.
  36. Shutova, Y., A. Baker, J. Bridgeman and R.K. Henderson. 2014. Spectroscopic characterisation of dissolved organic matter changes in drinking water treatment: From PARAFAC analysis to online monitoring wavelengths. Water Research 54: 159-169. https://doi.org/10.1016/j.watres.2014.01.053
  37. Williams, C.J., P.C. Frost, A.M. Morales-Williams, J.H. Larson, W.B. Richardson, A.S. Chiandet and M.A. Xenopoulos. 2016. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems. Global change Biology 22(2): 613-626. https://doi.org/10.1111/gcb.13094
  38. Wilson, H.F. and M.A. Xenopoulos. 2009. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nature Geoscience 2: 37-41. https://doi.org/10.1038/ngeo391
  39. Yamashita, Y., C.G. Fichot, Y. Shen, R. Jaffe and R. Benner. 2015. Linkages among fluorescent dissolved organic matter, dissolved amino acids and ligninderived phenols in a river-influenced ocean margin. Frontiers in Marine Science 2: 92.
  40. Yu, H., H. Liang, F. Qu, Z.S. Han, S. Shao, H. Chang and G. Li. 2015. Impact of dataset diversity on accuracy and sensitivity of parallel factor analysis model of dissolved organic matter fluorescence excitation-emission matrix. Scientific Reports 5(1): 1-11. https://doi.org/10.9734/JSRR/2015/14076
  41. Zhao, Y., K. Song, Y. Shang, T. Shao, Z. Wen and L. Lv. 2017. Characterization of CDOM of river waters in China using fluorescence excitation-emission matrix and regional integration techniques. Journal of Geophysical Research: Biogeosciences 122(8): 1940-1953. https://doi.org/10.1002/2017JG003820