DOI QR코드

DOI QR Code

WIJSMAN REGULARLY IDEAL INVARIANT CONVERGENCE OF DOUBLE SEQUENCES OF SETS

  • DUNDAR, ERDINC (Department of Mathematics, Afyon Kocatepe University) ;
  • TALO, OZER (Manisa Celal Bayar Universitesi Kume evleri)
  • Received : 2020.08.31
  • Accepted : 2021.02.13
  • Published : 2021.05.30

Abstract

In this paper, we introduce the notions of Wijsman regularly invariant convergence types, Wijsman regularly (${\mathcal{I}}_{\sigma}$, ${\mathcal{I}}^{\sigma}_2$)-convergence, Wijsman regularly (${\mathcal{I}}^*_{\sigma}$, ${\mathcal{I}}^{{\sigma}*}_2$)-convergence, Wijsman regularly (${\mathcal{I}}_{\sigma}$, ${\mathcal{I}}^{\sigma}_2$) -Cauchy double sequence and Wijsman regularly (${\mathcal{I}}^*_{\sigma}$, ${\mathcal{I}}^{{\sigma}*}_2$)-Cauchy double sequence of sets. Also, we investigate the relationships among this new notions.

Keywords

References

  1. M. Baronti, and P. Papini, Convergence of sequences of sets, In: Methods of functional analysis in approximation theory, ISNM 76, Birkhauser-Verlag, Basel, 1986.
  2. G. Beer, On convergence of closed sets in a metric space and distance functions, Bull. Aust. Math. Soc. 31 (1985), 421-432. https://doi.org/10.1017/S0004972700009370
  3. G. Beer, Wijsman convergence:A survey, Set-Valued Var. Anal. 2 (1994), 77-94. https://doi.org/10.1007/BF01027094
  4. N. Pancaroglu Akin, E. Dundar and F. Nuray, Wijsman ${\mathcal{I}}$-invariant convergence of sequences of sets, Bulletin of Mathematical Analysis and Applications 11 (2019), 1-9.
  5. N. Pancaroglu Akin, Regularly ideal invariant convergence of double sequences, in review.
  6. B. Altay, F. Basar, Some new spaces of double sequences, J. Math. Anal. Appl. 309 (2005), 70-90. https://doi.org/10.1016/j.jmaa.2004.12.020
  7. C. Cakan, B. Altay, M. Mursaleen, The σ-convergence and σ-core of double sequences, Applied Mathematics Letters 19 (2006), 1122-1128. https://doi.org/10.1016/j.aml.2005.12.003
  8. P. Das, P. Kostyrko, W. Wilczynski, P. Malik, ${\mathcal{I}}$ and ${\mathcal{I}}$*-convergence of double sequences, Math. Slovaca 58 (2008), 605-620. https://doi.org/10.2478/s12175-008-0096-x
  9. K. Dems, On ${\mathcal{I}}$-Cauchy sequences, Real Anal. Exchange 30 (2005), 123-128. https://doi.org/10.14321/realanalexch.30.1.0123
  10. E. Dundar, B. Altay, ${\mathcal{I}}_2$-convergence and ${\mathcal{I}}_2$-Cauchy of double sequences, Acta Mathematica Scientia 34 (2014), 343-353. https://doi.org/10.1016/S0252-9602(14)60009-6
  11. E. Dundar, B. Altay, On some properties of ${\mathcal{I}}_2$-convergence and ${\mathcal{I}}_2$-Cauchy of double sequences, Gen. Math. Notes 7 (2011), 1-12.
  12. E. Dundar, B. Altay, ${\mathcal{I}}_2$-convergence of double sequences of functions, Electronic Journal of Mathematical Analysis and Applications 3 (2015), 111-121.
  13. E. Dundar, B. Altay ${\mathcal{I}}_2$-uniform convergence of double sequences of functions, Filomat 30 (2016), 1273-1281. https://doi.org/10.2298/FIL1605273D
  14. E. Dundar, B. Altay, Multipliers for bounded ${\mathcal{I}}_2$-convergent of double sequences, Math. Comput. Modelling 55 (2012), 1193-1198. https://doi.org/10.1016/j.mcm.2011.09.043
  15. E. Dundar, O. Talo, ${\mathcal{I}}_2$-convergence of double sequences of fuzzy numbers, Iranian Journal of Fuzzy Systems 10 (2013), 37-50.
  16. E. Dundar, M.R. Turkmen and N. Pancaroglu Akin, Regularly ideal convergence of double sequences in fuzzy normed spaces, in review.
  17. E. Dundar, Regularly (${\mathcal{I}}_2$, ${\mathcal{I}}$)-Convergence and (${\mathcal{I}}_2$, ${\mathcal{I}}$)-Cauchy Double Sequences of Functions, Pioneer Journal of Algebra, Number Theory and its Applications 1 (2011), 85-98.
  18. E. Dundar, O. Talo and F. Basar, Regularly (${\mathcal{I}}_2$, ${\mathcal{I}}$)-convergence and regularly (${\mathcal{I}}_2$, ${\mathcal{I}}$)-Cauchy double sequences of fuzzy numbers, International Journal of Analysis 2013 (2013), 1-7.
  19. E. Dundar, U. Ulusu, F. Nuray, On ideal invariant convergence of double sequences and some properties, Creative Mathematics and Informatics 27 (2018), 161-169. https://doi.org/10.37193/CMI.2018.02.08
  20. E. Dundar, U. Ulusu, N. Pancaroglu, Strongly ${\mathcal{I}}_2$-lacunary convergence and ${\mathcal{I}}_2$-lacunary Cauchy double sequences of sets, The Aligarh Bulletin of Mathematics 35 (2016), 1-15.
  21. E. Dundar, N. Pancaroglu, U. Ulusu, Wijsman lacunary I-invariant convergence of sequences of sets, Proceedings of The National Academy Of Sciences India Section A-Physical Sciences 90 (2020), DOI: https://doi.org/10.1007/s40010-020-00694-w.
  22. E. Dundar and N. Pancaroglu Akin, Wijsman regularly ideal convergence of double sequences of sets, Journal of Intelligent and Fuzzy Systems 37 (2019), 8159-8166. https://doi.org/10.3233/JIFS-190626
  23. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
  24. P. Kostyrko, T. Salat, W. Wilczynski, ${\mathcal{I}}$-convergence, Real Anal. Exchange 26 (2000), 669-686. https://doi.org/10.2307/44154069
  25. V. Kumar, On ${\mathcal{I}}$ and ${\mathcal{I}}$*-convergence of double sequences, Math. Commun. 12 (2007), 171-181.
  26. M. Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223-231. https://doi.org/10.1016/j.jmaa.2003.08.004
  27. M. Mursaleen, Matrix transformation between some new sequence spaces, Houston J. Math. 9 (1983), 505-509.
  28. M. Mursaleen, On finite matrices and invariant means, Indian J. Pure Appl. Math. 10 (1979), 457-460.
  29. M. Mursaleen, O.H.H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett. 22 (2009), 1700-1704. https://doi.org/10.1016/j.aml.2009.06.005
  30. A. Nabiev, S. Pehlivan, M. Gurdal, On ${\mathcal{I}}$-Cauchy sequences, Taiwanese J. Math. 11 (2007), 569-576. https://doi.org/10.11650/twjm/1500404709
  31. F. Nuray, H. Gok, U. Ulusu, ${\mathcal{I}}_{\sigma}$-convergence, Math. Commun. 16 (2011), 531-538.
  32. N. Pancaroglu, F. Nuray, Statistical lacunary invariant summability, Theoret. Math. Appl. 3 (2013), 71-78.
  33. N. Pancaroglu, F. Nuray, On invariant statistically convergence and lacunary invariant statistically convergence of sequences of sets, Prog. Appl. Math. 5 (2013), 23-29.
  34. A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321. https://doi.org/10.1007/BF01448977
  35. R.A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81-94. https://doi.org/10.1215/S0012-7094-63-03009-6
  36. E. Savas, Some sequence spaces involving invariant means, Indian J. Math. 31 (1989), 1-8.
  37. E. Savas, Strongly σ-convergent sequences, Bull. Calcutta Math. 81 (1989), 295-300.
  38. P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104-110. https://doi.org/10.1090/S0002-9939-1972-0306763-0
  39. I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375. https://doi.org/10.2307/2308747
  40. Y. Sever, E. Dundar, Regularly ideal convergence and regularly ideal Cauchy double sequences in 2-normed spaces, Filomat 28 (2015), 907-915. https://doi.org/10.2298/FIL1405907S
  41. B. Tripathy, B.C. Tripathy, On ${\mathcal{I}}$-convergent double sequences, Soochow J. Math. 31 (2005), 549-560.
  42. S. Tortop, E. Dundar, Wijsman ${\mathcal{I}}_2$-invariant convergence of double sequences of sets, Journal of Inequalities and Special Functions 9 (2018), 90-100 .
  43. U. Ulusu, E. Dundar, Asymptotically lacunary ${\mathcal{I}}_2$-invariant equivalence, Journal of Intelligent and Fuzzy Systems 36 (2019), 467-472. https://doi.org/10.3233/JIFS-181796
  44. U. Ulusu, E. Dundar, F. Nuray, Lacunary ${\mathcal{I}}_2$-invariant convergence and some properties, International Journal of Analysis and Applications 16 (2018), 317-327.
  45. R.A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc. 70 (1964), 186-188. https://doi.org/10.1090/S0002-9904-1964-11072-7
  46. R.A. Wijsman, Convergence of sequences of convex sets, cones and functions II, Trans. Amer. Math. Soc. 123 (1966), 32-45. https://doi.org/10.1090/S0002-9947-1966-0196599-8