DOI QR코드

DOI QR Code

5G 네트워크에서 비직교 다중 접속 2PAM의 근접 1+1 용량 영역 달성을 위한 총 전력과 할당의 계산

On Calculation of Total Power and Allocation for Achieving Near 1+1 Capacity Region of 2PAM NOMA in 5G Networks

  • 정규혁 (단국대학교 소프트웨어학과)
  • 투고 : 2021.03.26
  • 심사 : 2021.05.20
  • 발행 : 2021.05.28

초록

이진 변조 비직교 다중접속에서 1+1 용량 영역을 달성하는 주제에 대한, 다시 말해, 총 전력은 얼마나 필요한가와 이때 전력은 어떻게 할당해야 되는가에 대한 연구가 다소 미흡하다. 본 논문에서는, 허용 가능한 손실범위 안에서, 2PAM 비직교 다중 접속의 1+1 용량 영역을 달성할 수 있는 평균 총 전송 전력을 고찰한다. 다음으로, 충분한 평균 총 전력을 기반으로 1+1 용량 영역을 달성할 수 있는 전력 할당 계수를 계산한다. 그리고, 수치적 결과를 통해서 0.008 미만의 허용 가능한 손실 범위 안에서, 근접 1+1 용량 영역이 달성됨을 보여준다. 또한, 수치상으로 근접 1+1 용량 영역을 달성하는 양 사용자의 전력 할당 계수를 계산한다. 결론적으로 2PAM 비직교 다중 접속이 근접 1+1 용량 영역에서 동작하기 위해, 적절한 전력 할당과 함께, 적당한 총 전력이 비직교 다중접속 설계에서 계산될 수 있다.

In binary-modulation non-orthogonal multiple access (NOMA), there has been rare researches for the 1+1 capacity region to be achieved; how much total power is required and what power allocation is assigned for this total power. In this paper, the average total transmitted power to achieve 1+1 capacity region of binary pulse amplitude modulation (2PAM) NOMA is investigated, with a tolerable loss. Then, based on the sufficient average total transmitted power, we calculate the power allocation coefficient to achieve 1+1 capacity region. Furthermore, it is shown by numerical results that with the tolerable loss less than 0.008, near 1+1 capacity region is achieved. We also calculate numerically the power allocation coefficient for both users to achieve near 1+1 capacity region. As a result, for 2PAM NOMA to operate near 1+1 capacity region, proper total power with appropriate power allocation could be calculated in design of NOMA systems.

키워드

참고문헌

  1. Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, C.-L. I, & H. V. Poor. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag., 55(2), 185-191. DOI : 10.1109/MCOM.2017.1500657CM
  2. L. Dai, B. Wang & Y. Yuan, S. Han, C.-L. I & Z. Wang. (2015). Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag., 53(9), 74-81. DOI : 10.1109/MCOM.2015.7263349
  3. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li & K. Higuchi. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In 2013 IEEE 77th vehicular technology conference (VTC Spring) (pp. 1-5). IEEE.
  4. Q. Wang, R. Zhang, L. L. Yang & L. Hanzo. (2018). Non-orthogonal multiple access: a unified perspective. IEEE Wirel. Commun., 25(2), 10-16. DOI : 10.1109/MWC.2018.1700070
  5. D. Wan, M. Wen, F. Ji, H. Yu & F. Chen. (2018). Non-orthogonal multiple access for cooperative communications: Challenges, opportunities, and trends. IEEE Wireless Commun., 25(2), 109-117. DOI : 10.1109/MWC.2018.1700134
  6. M. Aldababsa, C. Goztepe, G. K. Kurt & O. Kucur. (2020). Bit error rate for NOMA network. IEEE Commun. Lett., 24(6), 1188-1191 . DOI : 10.1109/LCOMM.2020.2981024
  7. A. A. A. Boulogeorg, N. D. Chatzidiamantis & G. K. Karagiannid. (2020). Non-orthogonal multiple access in the presence of phase noise. IEEE Commun. Lett., 24(5), 1133-1137. DOI : 10.1109/LCOMM.2020.2978845
  8. L. Bariah, S. Muhaidat & A. Al-Dweik. (2019). Error Probability Analysis of Non-Orthogonal Multiple Access Over Nakagami-m Fading Channels. IEEE Trans. Commun., 67(2), 1586-1599. DOI : 10.1109/TCOMM.2018.2876867
  9. T. Assaf, A. Al-Dweik, M. E. Moursi & H. Zeineldin. (2019). Exact BER Performance Analysis for Downlink NOMA Systems Over Nakagami-m Fading Channels. IEEE Access, 7, 134539-134555. DOI : 10.1109/ACCESS.2019.2942113
  10. I. Lee & J. Kim. (2019). Average Symbol Error Rate Analysis for Non-Orthogonal Multiple Access With M-Ary QAM Signals in Rayleigh Fading Channels. IEEE Commun. Lett., 23(8), 1328-1331. DOI : 10.1109/LCOMM.2019.2921770
  11. B. Makki. K. Chitti. A. Behravan & M. Alouini. (2020). A survey of NOMA: Current status and open research challenges. IEEE Open J. of the Commun. Society, 1, 179-189. DOI : 10.1109/OJCOMS.2020.2969899
  12. W. Wu. F. Zhou. R. Q. Hu & B. Wang. (2020). Energy-efficient resource allocation for secure NOMA-enabled mobile edge computing networks. IEEE Trans. Commun, 68(1), 493-505. DOI : 10.1109/TCOMM.2019.2949994
  13. R. M. Christopher & D. K. Borah. (2020). Physical layer security for weak user in MISO NOMA using directional modulation (NOMAD). IEEE Commun. Lett., 24(5), 956-960. DOI : 10.1109/LCOMM.2020.2975193
  14. Z. Ding, & H. V. Poor. (2020). A simple design of IRS-NOMA transmission. IEEE Commun. Lett., 24(5), 1119-1123. DOI : 10.1109/LCOMM.2020.2974196
  15. Y. Tian, X. Wang, Z. Wang, & Y. H. Kho. (2020). On the performance of mutual-aid NOMA strategy in cooperative networks. IEEE Commun. Lett., 24(2), 282-286. DOI : 10.1109/LCOMM.2019.2958073
  16. E. M. Almohimmah & M. T. Alresheedi. (2020). Error analysis of NOMA-based VLC systems with higher order modulation schemes. IEEE Access, 8, 2792-2803. DOI : 10.1109/ACCESS.2019.2962331
  17. K. Chung. (2020). A comparison of BER performance for receivers of NOMA in 5G mobile communication system. Journal of Convergence for Information Technology, 10(8), 7-14. DOI : 10.22156/CS4SMB.2020.10.8.007
  18. K. Chung. (2020). Impact of channel estimation errors on SIC performance of NOMA in 5G systems. Journal of Convergence for Information Technology, 10(9), 22-27. DOI : 10.22156/CS4SMB.2020.10.09.022
  19. K. Chung. (2020). On design and performance analysis of asymmetric 2PAM: 5G network NOMA perspective. Journal of Convergence for Information Technology, 10(10), 24-31. DOI : 10.22156/CS4SMB.2020.10.10.024
  20. K. Chung. (2021). NOMA for correlated information sources in 5G systems. IEEE Commun. Lett., 25(2), 422-426. DOI : 10.1109/LCOMM.2020.3027726