DOI QR코드

DOI QR Code

Electrochemical properties of AZ31, AZ61 magnesium alloy electrodes for eco-friendly Magnesium-air battery

친환경 마그네슘-공기 전지용 AZ31, AZ61 마그네슘 합금 전극의 전기화학적 특성

  • Received : 2021.04.02
  • Accepted : 2021.05.20
  • Published : 2021.05.28

Abstract

Eco-friendly magnesium-air battery is a kind of metal-air battery known as a primary battery with a very high theoretical discharge capacity. This battery is also called a metal-fuel cell from the viewpoint of using oxygen in the atmosphere as a cathode active material and magnesium alloy as a fuel. Since battery performance is determined by the properties of the magnesium alloy used as a anode, more research and development of the magnesium alloy electrode as a anode material are required in order to commercialize it as a high-performance battery. In this study, the commercialized magnesium alloys(AZ31, AZ61) were selected and then electrochemical measurements and discharge test were conducted. Electrochemical properties of magnesium alloys were investigated by OCP changes, Tafel parameters and CV measurement, and the feasibilities of AZ61 alloy with excellent discharge capacity(1410mAhg-1) as electrode materials were evaluated through CC discharge experiments.

환경 친화적인 마그네슘-공기 전지는 이론적 방전용량이 매우 높은 1차전지로 알려진 금속-공기 전지이며 대기 중 산소를 양극 활물질로 사용하고 마그네슘 합금을 연료로 사용하는 관점에서 금속-연료전지로도 불리고 있다. 음극으로 사용하는 마그네슘합금의 성능에 따라 전지 전체 성능이 결정되므로 고성능 전지로 상용화하기 위해서는 음극 재료인 마그네슘 합금 전극의 성능에 대한 연구와 개선이 필요하다. 본 연구는 상용화된 마그네슘 합금(AZ31, AZ61)을 선택하여 마그네슘-공기 전지용 전극재료로서 가능성을 평가하기 위하여 전기화학적인 측정을 실시하고 방전 특성을 조사하였다. 개방회로전위 변화, Tafel 곡선 변화, 순환전류전압곡선 측정을 통해 마그네슘합금들의 전기화학적 특성을 조사하였고 정전류 방전 실험을 통해 AZ61 합금의 우수한 방전 용량(1410mAhg-1)과 가능성을 평가하였다.

Keywords

References

  1. D. Linden & T. B. Reddy. (2002). Handbook of Batteries. New York : McGrawHill.
  2. M. Armand & J. M. Tarascon. (2008). Building better batteries. Nature, 451, 652-657. DOI: 10.1038/451652a
  3. F. Y. Cheng & J. Chen. (2012). Metal-air batteries : from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews. 41(6), 2172-2192. DOI: 10.1039/c1cs15228a
  4. M. H. Jang, Y. J. Kang, H. K. Jo, C. I. Park, H. S. Sim & J. I. Park. (2021). Review of Carbon Materials Used in Fuel cell Components. The Korean Journal of The Korea Convergence Society, 12(2), 193-200. DOI: 10.15207/JKCS.2021.12.2.193
  5. T. Zhang. Z. Tao & J. Chen. (2014). Magnesium-air batteries: From principle to application. Materials Horizons, 1(2), 196-206. DOI: 10.1039/c3mh00059a
  6. M. A. Deyab. (2016). Decyl glucoside as a corrosion inhibitor for magnesium-air battery. Journal of Power Sources, 325(1), 98-103. DOI: 10.1016/j.jpowsour.2016.06.006
  7. M. M. Dinesh, K. Saminathan, M. Selvam, S. R. Srither, V. Rajendran & K. V. Kaler. (2015). Water soluble graphene as electrolyte additive in magnesium-air battery system. Journal of Power Sources, 276(15), 32-38. DOI: 10.1016/j.jpowsour.2014.11.079
  8. Y. H. Kim. (2016), Transient Characteristics of Mg/Air Fuel Cell. The Transactions of the Korean Institute of Electrical Engineer, 65P(3), 210-215. DOI: 10.5370/KIEEP.2016.65.3.210. 210.
  9. A. Kaisheva. (2005, September). Metal-air batteries : research, development, application. Proceedings of the international workshop "portable and emergency energy source-from materials to systems", (pp. 16-22).
  10. Z. H. yang, B. Pei & J. U. Dongying. (2009). Electrochemical performance of magnesium alloy and its application on the sea water battery. Journal of Environmental Sciences Supplement, 21(1). s88-s91. DOI: 10.1016/S1001-0742(09)60045-0
  11. M. L. I. Ibrahim, (2020). The effect of injection barrier on the open-circuit voltage of organic photovoltaic cells. materialstoday:PROCEDEDINGS, 29(1), 48-51. DOI:10.1016/j.matpr.2020.05.677
  12. J. Tian, R. Xiong, W. Shen & F. Sun. (2021). Electrode ageing estimation and open circuit voltage reconstruction for lithium ion batteries. Energy Storage Materials, 37. 283-295. DOI: 10.1016/j.ensm.2021.02.018
  13. D. Li, C. Lin, C. Batchelor-McAuley, L. Chen & R. G. Compton, (2018). Tafel analysis in practice. Journal of Electroanalytical Chemistry, 826(1). 117-124. DOI: 10.1016/j.jelechem.2018.08.018
  14. O. Seri. (2017). Differentiating approach to the Tafel slope of hydrogen evolution reaction on nickel electrode. Electrochemistry Communications, 81. 150-153. DOI: 10.1016/j.elecom.2017.07.004
  15. S. Sathyanarayana & N. Munichandraiah. (1981). A new magnesium - air cell for long-life applications. Journal of Applied Electrochemistry, 11. 33-39. DOI: 10.1007/BF00615319