DOI QR코드

DOI QR Code

Improving Electrochemical Performance of Ni-rich Cathode Using Atomic Layer Deposition with Particle by Particle Coating Method

  • Kim, Dong Wook (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Park, DaSom (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Ko, Chang Hyun (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Shin, Kwangsoo (Department of Chemical-Plant Mechanical Engineering, Hanyeong University) ;
  • Lee, Yun-Sung (Department of Advanced Chemicals and Engineering, Chonnam National University)
  • 투고 : 2020.11.05
  • 심사 : 2020.12.14
  • 발행 : 2021.05.28

초록

Atomic layer deposition (ALD) enhances the stability of cathode materials via surface modification. Previous studies have demonstrated that an Ni-rich cathode, such as LiNi0.8Co0.1Mn0.1O2, is a promising candidate owing to its high capacity, but is limited by poor cycle stability. In this study, to enhance the stability of the Ni-rich cathode, synthesized LiNi0.8Co0.1Mn0.1O2 was coated with Al2O3 using ALD. Thus, the surface-modified cathode exhibited enhanced stability by protecting the interface from Ni-O formation during the cycling process. The coated LiNi0.8Co0.1Mn0.1O2 exhibited a capacity of 176 mAh g-1 at 1 C and retained up to 72% of the initial capacity after 100 cycles within a range of 2.8-4.3 V (vs Li/Li+. In contrast, pristine LiNi0.8Co0.1Mn0.1O2 presented only 58% of capacity retention after 100 cycles with an initial capacity of 173 mAh g-1. Improved cyclability may be a result of the ALD coating, which physically protects the electrode by modifying the interface, and prevents degradation by resisting side reactions that result in capacity decay. The electrochemical impedance spectra and structural and morphological analysis performed using electron microscopy and X-ray techniques establish the surface enhancement resulting from the aforementioned strategy.

키워드

과제정보

The authors gratefully acknowledge the financial support from the Ministry of Trade, Industry & Energy, Republic of Korea ( 10080314 ). DWK would like to thank Seon - yeong Lee and Bala Krishnan Ganesan for their help and support.

참고문헌

  1. Y. Kim, H. Lee, S. Kang, J. Mater. Chem. A., 2012, 22(25), 12874-12881. https://doi.org/10.1039/c2jm31145c
  2. Q. Liu, X. Su, D. Lei, Y. Qin, J. Wen, F. Guo, F. Aguesse, Nat. Energy., 2018, 3(11), 936-943. https://doi.org/10.1038/s41560-018-0180-6
  3. W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, J. Cho, Angew. Chem. Int. Ed., 2015, 54(10), 4440-4457. https://doi.org/10.1002/anie.201409262
  4. X. Li, K. Zhang, M. Wang, Y. Liu, M. Qu, W. Zhao, J. Zheng, Sustain. Energy Fuels., 2018, 2(2), 413-421 . https://doi.org/10.1039/C7SE00513J
  5. B. Zhang, P. Dong, H. Tong, Y. Yao, J. Zheng, W. Yu, D. Chu, J. Alloys Compd., 2017, 706, 198-204. https://doi.org/10.1016/j.jallcom.2017.02.224
  6. J. Cho, T.-J. Kim, J. Kim, M. Noh, B. Park, J. Electrochem. Soc., 2004, 151(11), A1899. https://doi.org/10.1149/1.1802411
  7. J. G. Han, K. Kim, Y. Lee, N. S. Choi, Adv. Mater., 2019, 31(20), 1804822. https://doi.org/10.1002/adma.201804822
  8. H. Zhang, L. Shi, Y. Zhao, Z. Wang, H. Chen, J. Zhu, S. Yuan, J. Power Sources., 2019, 435, 226773. https://doi.org/10.1016/j.jpowsour.2019.226773
  9. G. W. Yoo, J. T. Son, J. Electrochem. Sci., 2016, 7(2), 179-184. https://doi.org/10.33961/JECST.2016.7.2.179
  10. J. W. Lee, Y. J. Park, J. Electrochem. Sci., 2016, 7(4), 263-268. https://doi.org/10.33961/JECST.2016.7.4.263
  11. J. S. Park, Y. J. Park, J. Electrochem. Sci., 2017, 8(2), 101-106. https://doi.org/10.33961/JECST.2017.8.2.101
  12. F. Schipper, H. Bouzaglo, M. Dixit, E. M. Erickson, T. Weigel, M. Talianker, Adv. Energy Mater., 2018, 8(4), 1701682. https://doi.org/10.1002/aenm.201701682
  13. S. H. Lee, G. J. Park, S. J. Sim, B. S. Jin, H. S. Kim, J. Alloys Compd., 2019, 791, 193-199. https://doi.org/10.1016/j.jallcom.2019.03.308
  14. K. Meng, Z. Wang, H. Guo, X. Li, and D. Wang, Electrochim. Acta., 2016, 211, 822-831. https://doi.org/10.1016/j.electacta.2016.06.110
  15. S. W. Lee, M. S. Kim, J. H. Jeong, D. H. Kim, K. Y. Chung, K. C. Roh, K. B. Kim, J. Power Sources., 2017, 360, 206-214. https://doi.org/10.1016/j.jpowsour.2017.05.042
  16. S. H. Lee, C. S. Yoon, K. Amine, Y. K. Sun, J. Power Sources., 2013, 234, 201-207. https://doi.org/10.1016/j.jpowsour.2013.01.045
  17. Z. Chen, Y. Qin, K. Amine, Y. K. Sun, J. Mater. Chem., 2010, 20(36), 7606-7612. https://doi.org/10.1039/c0jm00154f
  18. R. Thangavel, M. Moorthy, B. K. Ganesan, W. Lee, W. S. Yoon, Y. S. Lee, Small, 2020, 16(41), 2003688. https://doi.org/10.1002/smll.202003688
  19. H. V. Ramasamy, S. Sinha, J. Park, M. Gong, V. Aravindan, J. Heo, Y. S. Lee, J. Electrochem. Sci., 2019, 10(2), 196-205.
  20. S. Hao, C. Wolverton, J. Phys. Chem. C., 2013, 117(16), 8009-8013. https://doi.org/10.1021/jp311982d
  21. A. C. Dillon, A. W. Ott, J. D. Way, S. M. George, Surf Sci., 1995, 322(1-3), 230-242. https://doi.org/10.1016/0039-6028(94)00578-8
  22. M. D. Groner, F. H. Fabreguette, J. W. Elam, S. M. George, Chem. Mater., 2004, 16(4), 639-645. https://doi.org/10.1021/cm0304546
  23. A. W. Ott, J. W. Klaus, J. M. Johnson, S. M. George, Thin Solid Films, 1997, 292(1-2), 135-144. https://doi.org/10.1016/S0040-6090(96)08934-1
  24. Y. Xi, Y. Liu, D. Zhang, S. Jin, R. Zhang, M. Jin, Solid State Ion., 2018, 327, 27-31. https://doi.org/10.1016/j.ssi.2018.10.020
  25. Z. Zhang, D. Chen, C. Chang, RSC Adv., 2017, 7(81), 51721-51728. https://doi.org/10.1039/C7RA10053A
  26. M. D. Groner, J. W. Elam, F. H. Fabreguette, S. M. George, Thin Solid Films., 2002, 413(1-2), 186-197. https://doi.org/10.1016/S0040-6090(02)00438-8
  27. A. H. Alshehri, K. Mistry, V. H. Nguyen, K. H. Ibrahim, D. Munoz?Rojas, M. Yavuz, K. P. Musselman, Adv. Funct. Mater., 2019, 29(7), 1805533. https://doi.org/10.1002/adfm.201805533
  28. T. Hatsukade, A. Schiele, P. Hartmann, T. Brezesinski, J. Rgen Janek, ACS Appl. Mater. Interfaces., 2018, 10(45), 38892-38899. https://doi.org/10.1021/acsami.8b13158

피인용 문헌

  1. Interface-Stabilized Layered Lithium Ni-Rich Oxide Cathode via Surface Functionalization with Titanium Silicate vol.13, pp.40, 2021, https://doi.org/10.1021/acsami.1c15271