DOI QR코드

DOI QR Code

Graphene Based Electrochemical DNA Biosensor for Detection of False Smut of Rice (Ustilaginoidea virens)

  • Rana, Kritika (Amity Institute of Nanotechnology, Amity University Uttar Pradesh) ;
  • Mittal, Jagjiwan (Amity Institute of Nanotechnology, Amity University Uttar Pradesh) ;
  • Narang, Jagriti (Amity Institute of Nanotechnology, Amity University Uttar Pradesh) ;
  • Mishra, Annu (Amity Institute of Nanotechnology, Amity University Uttar Pradesh) ;
  • Pudake, Ramesh Namdeo (Amity Institute of Nanotechnology, Amity University Uttar Pradesh)
  • Received : 2020.11.18
  • Accepted : 2021.05.15
  • Published : 2021.06.01

Abstract

False smut caused by Ustilaginoidea virens is an important rice fungal disease that significantly decreases its production. In the recent past, conventional methods have been developed for its detection that is time-consuming and need high-cost equipments. The research and development in nanotechnology have made it possible to assemble efficient recognition interfaces in biosensors. In this study, we present a simple, sensitive, and selective oxidized graphene-based geno-biosensor for the detection of rice false smut. The biosensor has been developed using a probe DNA as a biological recognition element on paper electrodes, and oxidized graphene to enhance the limit of detection and sensitivity of the sensor. Probe single-stranded DNA (ssDNA) and target ssDNA hybridization on the interface surface has been quantitatively measured with the electrochemical analysis tools namely, cyclic voltammetry, and linear sweep voltammetry. To confirm the selectivity of the device, probe hybridization with non-complementary ssDNA target has been studied. In our study, the developed sensor was able to detect up to 10 fM of target ssDNA. The paper electrodes were employed to produce an effective and cost-effective platform for the immobilization of the DNA and can be extended to design low-cost biosensors for the detection of the other plant pathogens.

Keywords

References

  1. Bhargava, P., Kumar, A. and Kumar, S. 2018. Epidemiological studies of false smut disease of rice (Ustilaginoidea virens) in Bihar. J. Pharmacogn. Phytochem. 7:1537-1540.
  2. Cesewski, E. and Johnson, B. N. 2020. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 159:112214. https://doi.org/10.1016/j.bios.2020.112214
  3. Chen, Y., Qian, C., Liu, C., Shen, H., Wang, Z., Ping, J., Wu, J. and Chen, H. 2020. Nucleic acid amplification free biosensors for pathogen detection. Biosens. Bioelectron. 153:112049. https://doi.org/10.1016/j.bios.2020.112049
  4. Chen, Y., Yao, J., Li, Y.-F., Wang, W.-X., Yang, X. and Zhang, A.-F. 2014. Simple and rapid detection of rice false smut pathogen Ustilaginoidea virens in rice seeds. Phytoparasitica 42:371-375. https://doi.org/10.1007/s12600-013-0372-3
  5. Cinti, S., Minotti, C., Moscone, D., Palleschi, G. and Arduini, F. 2017. Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. Biosens. Bioelectron. 93:46-51. https://doi.org/10.1016/j.bios.2016.10.091
  6. Fang, Y. and Ramasamy, R. P. 2015. Current and prospective methods for plant disease detection. Biosensors 5:537-561. https://doi.org/10.3390/bios5030537
  7. Fu, X., Wang, A., Wang, X., Lin, F., He, L., Lai, D., Liu, Y., Li, Q. X., Zhou, L. and Wang, B. 2015. Development of a monoclonal antibody-based icELISA for the detection of ustiloxin B in rice false smut balls and rice grains. Toxins 7:3481-3496. https://doi.org/10.3390/toxins7093481
  8. Jain, U., Pudake, R. N., Chauhan, N. and Pareek, S. 2021. Advancements in biosensors for fungal pathogen detection in plants. In: Biosensors in agriculture: recent trends and future perspectives: concepts and strategies in plant sciences, eds. by R. N. Pudake, U. Jain and C. Kole, pp. 205-216. Springer, Cham, Switzerland.
  9. Jaiswal, M., Kumar, R., Mittal, J. and Jha, P. 2020. Synthesis of CrO3 intercalated multilayer graphene for rapid and reversible NH3 gas sensing. Sens. Actuators B Chem. 310:127826. https://doi.org/10.1016/j.snb.2020.127826
  10. Jiehua, Q., Shuai, M., Yizhen, D., Shiwen, H. and Yanjun, K. 2019. Ustilaginoidea virens: a fungus infects rice flower and threats world rice production. Rice Sci. 26:199-206. https://doi.org/10.1016/j.rsci.2018.10.007
  11. Justino, C. I. L., Gomes, A. R., Freitas, A. C., Duarte, A. C. and Rocha-Santos, T. A. P. 2017. Graphene based sensors and biosensors. TrAC Trend. Anal. Chem. 91:53-66. https://doi.org/10.1016/j.trac.2017.04.003
  12. Kara, P., Kerman, K., Ozkan, D., Meric, B., Erdem, A., Ozkan, Z. and Ozsoz, M. 2002. Electrochemical genosensor for the detection of interaction between methylene blue and DNA. Electrochem. Commun. 4:705-709. https://doi.org/10.1016/S1388-2481(02)00428-9
  13. Khan, M. Z. H., Hasan, M. R., Hossain, S. I., Ahommed, M. S. and Daizy, M. 2020. Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: state of the art. Biosens. Bioelectron. 166:112431. https://doi.org/10.1016/j.bios.2020.112431
  14. Khatkar, B. S., Chaudhary, N. and Dangi, P. 2016. Production and Consumption of Grains: India. In: Encyclopedia of Food Grains, 2nd ed., eds. by C. Wrigley, H. Corke, K. Seetharaman and J. Faubion, pp. 367-373. Academic Press, Oxford, UK.
  15. Khater, M., de la Escosura-Muniz, A. and Merkoci, A. 2017. Biosensors for plant pathogen detection. Biosens. Bioelectron. 93:72-86. https://doi.org/10.1016/j.bios.2016.09.091
  16. Krishnan, S. K., Singh, E., Singh, P., Meyyappan, M. and Nalwa, H. S. 2019. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 9:8778-8881. https://doi.org/10.1039/C8RA09577A
  17. Kumar, V. and Arora, K. 2020. Trends in nano-inspired biosensors for plants. Mater. Sci. Energy Technol. 3:255-273. https://doi.org/10.1016/j.mset.2019.10.004
  18. Li, H., Ni, D., Duan, Y. B., Chen, Y., Li, J., Song, F. S., Li, L., Wei, P. C. and Yang, J. B. 2013. Quantitative detection of the rice false smut pathogen Ustilaginoidea virens by real-time PCR. Genet. Mol. Res. 12:6433-6441. https://doi.org/10.4238/2013.December.10.4
  19. Li, Z., Yu, T., Paul, R., Fan, J., Yang, Y. and Wei, Q. 2020. Agricultural nanodiagnostics for plant diseases: recent advances and challenges. Nanoscale Adv. 2:3083-3094. https://doi.org/10.1039/C9NA00724E
  20. Lu, D.-H., Yang, X.-Q., Mao, J.-H., Ye, H.-L., Wang, P., Chen, Y.-P., He, Z.-Q. and Chen, F. 2009. Characterising the pathogenicity diversity of ustiiaginoidea virens in hybrid rice in China. J. Plant Pathol. 91:443-451.
  21. Malesevic, A., Vitchev, R., Schouteden, K., Volodin, A., Zhang, L., Van Tendeloo, G., Vanhulsel, A. and Van Haesendonck, C. 2008. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19:305604. https://doi.org/10.1088/0957-4484/19/30/305604
  22. Mathur, A., Gupta, R., Kondal, S., Wadhwa, S., Pudake, R. N., Shivani, Kansal, R., Pundir, C. S. and Narang, J. 2018. A new tactics for the detection of S. aureus via paper based genointerface incorporated with graphene nano dots and zeolites. Int. J. Biol. Macromol. 112:364-370. https://doi.org/10.1016/j.ijbiomac.2018.01.143
  23. Mittal, J. and Lin, K. L. 2020. Sn/SnO hybrid graphene for thermal interface material and interconnections with Sn hybrid carbon nanotubes. Mater. Sci. Eng. B 253:114485. https://doi.org/10.1016/j.mseb.2019.114485
  24. Morales-Narvaez, E. and Merkoci, A. 2019. Graphene oxide as an optical biosensing platform: a progress report. Adv. Mater. 31:1805043.
  25. Narang, J., Malhotra, N., Singhal, C., Mathur, A., Chakraborty, D., Anil, A., Ingle, A. and Pundir, C. S. 2017. Point of care with micro fluidic paper based device integrated with nano zeolite-graphene oxide nanoflakes for electrochemical sensing of ketamine. Biosens. Bioelectron. 88:249-257. https://doi.org/10.1016/j.bios.2016.08.043
  26. Pannu, P. P. S., Thind, T. S. and Sanjay, G. 2010. Standardization of technique for artificial creation of false smut of rice and its management. Indian Phytopathol. 63:234-235.
  27. Pudake, R. N., Chauhan, N. and Kole, C. 2019. Nanoscience for sustainable agriculture. Springer International Publishing, Cham, Switzerland. 711 pp.
  28. Pumera, M. 2011. Graphene in biosensing. Mater. Today 14:308-315. https://doi.org/10.1016/S1369-7021(11)70160-2
  29. Rohs, R. and Sklenar, H. 2001. Methylene blue binding to DNA with alternating GC base sequence: continuum treatment of salt effects. Indian J. Biochem. Biophys. 38:1-6.
  30. Singh, R. A. and Dube, K. S. 1978. Assessment of loss in seven rice cultivars due to false smut. Indian Phytopathol. 31:186-188.
  31. Singhal, C., Pundir, C. S. and Narang, J. 2017. A genosensor for detection of consensus DNA sequence of Dengue virus using ZnO/Pt-Pd nanocomposites. Biosens. Bioelectron. 97:75-82. https://doi.org/10.1016/j.bios.2017.05.047
  32. Sun, W., Fan, J., Fang, A., Li, Y., Tariqjaveed, M., Li, D., Hu, D. and Wang, W.-M. 2020. Ustilaginoidea virens: insights into an emerging rice pathogen. Annu. Rev. Phytopathol. 58:363-385. https://doi.org/10.1146/annurev-phyto-010820-012908
  33. Suvarnaphaet, P. and Pechprasarn, S. 2017. Graphene-based materials for biosensors: a review. Sensors 17:2161. https://doi.org/10.3390/s17102161
  34. Tanaka, E. and Tanaka, C. 2008. Phylogenetic study of clavicipitaceous fungi using acetaldehyde dehydrogenase gene sequences. Mycoscience 49:115-125. https://doi.org/10.1007/S10267-007-0401-5
  35. Tang, J., Zheng, L., Jia, Q., Liu, H., Hsiang, T. and Huang, J. 2017. PCR markers derived from comparative genomics for detection and identification of the rice pathogen Ustilaginoidea virens in plant tissues. Plant Dis. 101:1515-1521. https://doi.org/10.1094/PDIS-08-16-1088-RE
  36. Wang, X., Fu, X., Lin, F., Sun, W., Meng, J., Wang, A., Lai, D., Zhou, L. and Liu, Y. 2016. The contents of ustiloxins A and B along with their distribution in rice false smut balls. Toxins 8:262. https://doi.org/10.3390/toxins8090262
  37. Wongkaew, P. and Poosittisak, S. 2014. Diagnosis of sugarcane white leaf disease using the highly sensitive DNA based voltammetric electrochemical determination. Am. J. Plant Sci. 5:2256-2268. https://doi.org/10.4236/ajps.2014.515240
  38. Yang, X., Al-Attala, M. N., Zhang, Y., Zhang, A.-F., Zang, H.- Y., Gu, C.-Y., Gao, T.-C., Chen, Y., Al-Attala, M. N., Ali, F., Li, Y.-F. and Ali, F. 2018. Rapid detection of Ustilaginoidea virens from rice using loop-mediated isothermal amplification assay. Plant Dis. 102:1741-1747. https://doi.org/10.1094/PDIS-01-18-0065-RE
  39. Zhou, Y.-L., Izumitsu, K., Sonoda, R., Nakazaki, T., Tanaka, E., Tsuda, M. and Tanaka, C. 2003. PCR-based specific detection of Ustilaginoidea virens and Ephelis japonica. J. Phytopathol. 151:513-518. https://doi.org/10.1046/j.1439-0434.2003.00761.x
  40. Zulkifli, H., Salam, F., Saad, S. M., Abd Rahman, R., Rani, R. M., Karim, M. S. A. and Ishak, Z. 2016. Preliminary study of electrochemical DNA sensor for cucumber mosaic virus. Procedia Chem. 20:98-101. https://doi.org/10.1016/j.proche.2016.07.017