DOI QR코드

DOI QR Code

Preparation of Nanomaterial Wettable Powder Formulations of Antagonistic Bacteria from Phellodendron chinense and the Biological Control of Brown Leaf Spot Disease

  • Zeng, Yanling (College of Forestry, Sichuan Agricultural University) ;
  • Liu, Han (Ganzi Institute of Forestry Research) ;
  • Zhu, Tianhui (College of Forestry, Sichuan Agricultural University) ;
  • Han, Shan (College of Forestry, Sichuan Agricultural University) ;
  • Li, Shujiang (College of Forestry, Sichuan Agricultural University)
  • Received : 2021.02.08
  • Accepted : 2021.03.22
  • Published : 2021.06.01

Abstract

Brown leaf spot disease caused by Nigrospora guilinensis on Phellodendron chinense occurs in a large area in Dayi County, Chengdu City, Sichuan Province, China each year. This outbreak has severely reduced the production of Chinese medicinal plants P. chinense and caused substantial economic losses. The bacterial isolate JKB05 was isolated from the healthy leaves of P. chinense, exhibited antagonistic effects against N. guilinensis and was identified as Bacillus megaterium. The following fermentation medium and conditions improved the inhibitory effect of B. megaterium JKB05 on N. guilinensis: 2% glucose, 0.1% soybean powder, 0.1% KCl, and 0.05% MgSO4; initial concentration 6 × 106 cfu/ml, and a 42-h optimal fermentation time. A composite of 0.1% nano-SiO2 JKB05 improved the thermal stability, acid-base stability and ultraviolet resistance by 16%, 12%, and 38.9%, respectively, and nano-SiO2 was added to the fermentation process. The best formula for the wettable powder was 35% kaolin, 4% polyethylene glycol, 8% Tween, and 2% humic acid. The following quality test results for the wettable powder were obtained: wetting time 87.0 s, suspension rate 80.33%, frequency of microbial contamination 0.08%, pH 7.2, fineness 95.8%, drying loss 1.47%, and storage stability ≥83.5%. A pot experiment revealed that the ability of JKB05 to prevent fungal infections on P. chinense increased considerably and achieved levels of control as high as 94%. The use of nanomaterials significantly improved the ability of biocontrol bacteria to control this disease.

Keywords

Acknowledgement

This research was supported by the National Natural Science Foundation of China (grant number 31700568) and the Science and Technology Innovation (Seedling Project) Cultivation Project of Sichuan (grant number 2021066).

References

  1. Ali, M. A., Ahmed, T., Wu, W., Hossain, A., Hafeez, R., Islam Masum, M. M., Wang, Y., An, Q., Sun, G. and Li, B. 2020. Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials (Basel) 10:1146. https://doi.org/10.3390/nano10061146
  2. Azam, A., Ahmed, A. S., Oves, M., Khan, M. S. and Memic, A. 2012. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int. J. Nanomedicine 7:3527-3535.
  3. Bacon, C. W., Yates, I. E., Hinton, D. M. and Meredith, F. 2001. Biological control of Fusarium moniliforme in maize. Environ. Health Perspect. 109 Suppl 2:325-332.
  4. Bogdan, J., Jackowska-Tracz, A., Zarzynska, J. and PlawinskaCzarnak, J. 2015. Chances and limitations of nanosized titanium dioxide practical application in view of its physicochemical properties. Nanoscale Res. Lett. 10:57. https://doi.org/10.1186/s11671-015-0753-2
  5. Boukaew, S., Prasertsan, P., Troulet, C. and Bardin, M. 2017. Biological control of tomato gray mold caused by Botrytis cinerea by using Streptomyces spp. BioControl 62:793-803. https://doi.org/10.1007/s10526-017-9825-9
  6. Brader, G., Compant, S., Vescio, K., Mitter, B., Trognitz, F., Ma, L.-J. and Sessitsch, A. 2017. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu. Rev. Phytopathol. 55:61-83. https://doi.org/10.1146/annurev-phyto-080516-035641
  7. Bryaskova, R., Pencheva, D., Nikolov, S. and Kantardjiev, T. 2011. Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J. Chem. Biol. 4:185-191. https://doi.org/10.1007/s12154-011-0063-9
  8. Camara, M. C., Campos, E. V. R., Monteiro, R. A., do Espirito Santo Pereira, A., de Freitas Proenca, P. L. and Fraceto, L. F. 2019. Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. J. Nanobiotechnology 17:100. https://doi.org/10.1186/s12951-019-0533-8
  9. Chen, Y., Lu, W., Guo, Y., Zhu, Y. and Song, Y. 2019. Electrospun gelatin fibers surface loaded ZnO particles as a potential biodegradable antibacterial wound dressing. Nanomaterials (Basel) 9:525. https://doi.org/10.3390/nano9040525
  10. Chun, J. and Bae, K. S. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie van Leeuwenhoek 78:123-127. https://doi.org/10.1023/A:1026555830014
  11. Claus, D. 1992. A standardized Gram staining procedure. World J. Microbiol. Biotechnol. 1992;8:451-452. https://doi.org/10.1007/BF01198764
  12. Collaborative International Pesticides Analytical Council. 1970a. MT 75 - Determination of pH values (revised method). URL https://cipac.org/index.php/d7 [8 February 2021].
  13. Collaborative International Pesticides Analytical Council. 1970b. MT 15 - Suspensibility of wettable powders in water. URL https://www.cipac.org/index.php/mt-15-suspensibility-ofwettable-powders-in-water [8 February 2021].
  14. Collaborative International Pesticides Analytical Council. 1970c. MT 17 loss in weight. URL https://www.cipac.org/index.php/l2 [8 February 2021].
  15. Collaborative International Pesticides Analytical Council. 1970d. MT 46.3 - Accelerated storage procedure. URL https://www.cipac.org/index.php/mt-46-3-accelerated-storageprocedure/562-mt-46-3-accelerated-storage-procedure [8 February 2021].
  16. Collaborative International Pesticides Analytical Council. 1970e. MT 53 - Wettability. URL https://www.cipac.org/index.php/e15/544-mt-53-wettability [8 February 2021].
  17. Collaborative International Pesticides Analytical Council. 1970f. MT 59 Sieve analysis. Collaborative International Pesticides Analytical Council. 2016f. MT 59 - Sieve analysis. URL https://www.cipac.org/index.php/s6/477-mt-59-sieve-analysis [8 February 2021].
  18. Crijns, A. P. G., Gerbens, F., Plantinga, A. E. D., Meersma, G. J., de Jong, S., Hofstra, R. M. W., de Vries, E. G. E., van der Zee, A. G., de Bock, G. H. and te Meerman, G. J. 2006. A biological question and a balanced (orthogonal) design: the ingredients to efficiently analyze two-color microarrays with Confirmatory Factor Analysis. BMC Genomics 7:232. https://doi.org/10.1186/1471-2164-7-232
  19. Cromwick, A.-M. and Gross, R. A. 1995. Investigation by NMR of metabolic routes to bacterial γ-poly(glutamic acid) using 13C-labeled citrate and glutamate as media carbon sources. Can. J. Microbiol. 41:902-909. https://doi.org/10.1139/m95-124
  20. de Campos, V. E. B., Ricci-Junior, E. and Mansur, C. R. E. 2012. Nanoemulsions as delivery systems for lipophilic drugs. J. Nanosci. Nanotechnol. 12:2881-2890. https://doi.org/10.1166/jnn.2012.5690
  21. El-Naggar, M. E., Abdelsalam, N. R., Fouda, M. M. G., Mackled, M. I., Al-Jaddadi, M. A. M., Ali, H. M., Siddiqui, M. H. and Kandil, E. E. 2020. Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials (Basel) 10:739. https://doi.org/10.3390/nano10040739
  22. Flanagan, J. L., Brodie, E. L., Weng, L., Lynch, S. V., Garcia, O., Brown, R., Hugenholtz, P., DeSantis, T. Z., Andersen, G. L., Wiener-Kronish, J. P. and Bristow, J. 2007. Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. J. Clin. Microbiol. 45:1954-1962. https://doi.org/10.1128/JCM.02187-06
  23. Gangireddygari, V. S. R., Kalva, P. K., Ntushelo, K., Bangeppagari, M., Djami Tchatchou, A. D. and Bontha, R. R. 2017. Influence of environmental factors on biodegradation of quinalphos by Bacillus thuringiensis. Environ. Sci. Eur. 29:11. https://doi.org/10.1186/s12302-017-0109-x
  24. Gibreel, A., Sandercock, J. R., Lan, J., Goonewardene, L. A., Zijlstra, R. T., Curtis, J. M. and Bressler, D. C. 2009. Fermentation of barley by using Saccharomyces cerevisiae: examination of barley as a feedstock for bioethanol production and value-added products. Appl. Environ. Microbiol. 75:1363- 1372. https://doi.org/10.1128/AEM.01512-08
  25. Gillis, A., Fayad, N., Makart, L., Bolotin, A., Sorokin, A., Kallassy, M. and Mahillon, J. 2018. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol. Rev. 42:829-856. https://doi.org/10.1093/femsre/fuy034
  26. Gray, K. M., Banada, P. P., O'Neal, E. and Bhunia, A. K. 2005. Rapid Ped-2E9 cell-based cytotoxicity analysis and genotyping of Bacillus species. J. Clin. Microbiol. 43:5865-5872. https://doi.org/10.1128/JCM.43.12.5865-5872.2005
  27. He, L., Liu, Y., Mustapha, A. and Lin, M. 2011. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 166:207-215. https://doi.org/10.1016/j.micres.2010.03.003
  28. He, Y., Jin, Y., Wang, X., Yao, S., Li, Y., Wu, Q., Ma, G., Cui, F. and Liu, H. 2018. An antimicrobial peptide-loaded gelatin/ chitosan nanofibrous membrane fabricated by sequential layer-by-layer electrospinning and electrospraying techniques.. Nanomaterials (Basel) 8:327. https://doi.org/10.3390/nano8050327
  29. Hiradate, S., Yoshida, S., Sugie, H., Yada, H. and Fujii, Y. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61:693-698. https://doi.org/10.1016/S0031-9422(02)00365-5
  30. Hoffmaster, A. R., Ravel, J., Rasko, D. A., Chapman, G. D., Chute, M. D., Marston, C. K., De, B. K., Sacchi, C. T., Fitzgerald, C., Mayer, L. W., Maiden, M. C., Priest, F. G., Barker, M., Jiang, L., Cer, R. Z., Rilstone, J., Peterson, S. N., Weyant, R. S., Galloway, D. R., Read, T. D., Popovic, T. and Fraser, C. M. 2004. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. U. S. A. 101:8449-8454. https://doi.org/10.1073/pnas.0402414101
  31. Hunter, P. 2009. Fight fire with fire. Can biopesticides fill the void left by banning chemical pesticides and herbicides?. EMBO Rep. 10:433-436. https://doi.org/10.1038/embor.2009.77
  32. Johnson, F. H. and Campbell, D. H. 1945. The retardation of protein denaturation by hydrostatic pressure. J. Cell. Comp. Physiol. 26:43-46. https://doi.org/10.1002/jcp.1030260106
  33. Khan, M. R., Ahamad, F. and Rizvi, T. F. 2019. Effect of nanoparticles on plant pathogens. In: Advances in phytonanotechnology: from synthesis to application, eds. by M. Ghorbanpour and S. H. Wani, pp. 215-240. Academic Press, London, UK.
  34. Khan, M. R., Mohidin, F. A., Khan, U. and Ahamad, F. 2016. Native Pseudomonas spp. suppressed the root-knot nematode in in vitro and in vivo, and promoted the nodulation and grain yield in the field grown mungbean. Biol. Control 101:159-168. https://doi.org/10.1016/j.biocontrol.2016.06.012
  35. Khan, M. R. and Rizvi, T. F. 2014. Nanotechnology: scope and application in plant disease management. Plant Pathol. J. 13:214-231. https://doi.org/10.3923/ppj.2014.214.231
  36. Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S. and Lee, Y. S. 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53-58. https://doi.org/10.5941/MYCO.2012.40.1.053
  37. Krieg, N. R., Ludwig, W., Whitman, W., Hedlund, B. P., Paster, B. J., Staley, J. T., Ward, N., Brown, D. and Parte, A. 2011. Bergey's manual of systematic bacteriology. Vol. 4. 2nd ed. Springer-Verlag, New York, NY, USA. 949 pp.
  38. Lim, H. A. 2004. Nanotechnology in diagnostics and drug delivery. Med. Chem. Res. 13:401-413. https://doi.org/10.1007/s00044-004-0044-4
  39. Liu, J., He, Y., Chen, S., Xiao, Y., Hu, M. and Zhong, G. 2014. Development of a freeze-dried fungal wettable powder preparation able to biodegrade chlorpyrifos on vegetables. PLoS ONE 9:e103558. https://doi.org/10.1371/journal.pone.0103558
  40. Liu, Y., Chen, Z., Ng, T. B., Zhang, J., Zhou, M., Song, F., Lu, F. and Liu, Y. 2007. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28:553-559. https://doi.org/10.1016/j.peptides.2006.10.009
  41. Mi, Y., Tan, W., Zhang, J., Wei, L., Chen, Y., Li, Q., Dong, F. and Guo, Z. 2018. Synthesis, characterization, and antifungal property of hydroxypropyltrimethyl ammonium chitosan halogenated acetates. Mar. Drugs 16:315. https://doi.org/10.3390/md16090315
  42. Mondal, K. K. and Mani, C. 2012. Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann. Microbiol. 62:889-893. https://doi.org/10.1007/s13213-011-0382-7
  43. Niu, D.-D., Liu, H.-X., Jiang, C.-H., Wang, Y.-P., Wang, Q.-Y., Jin, H.-L. and Guo, J.-H. 2011. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol. Plant-Microbe Interact. 24:533-542. https://doi.org/10.1094/MPMI-09-10-0213
  44. Oslizlo, A., Stefanic, P., Vatovec, S., Beigot Glaser, S., Rupnik, M. and Mandic-Mulec, I. 2015. Exploring ComQXPA quorumsensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane. Microb. Biotechnol. 8:527-540. https://doi.org/10.1111/1751-7915.12258
  45. Park, H.-J., Kim, S.-H., Kim, H.-J. and Choi, S.-H. 2006. A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol. J. 22:295-302. https://doi.org/10.5423/PPJ.2006.22.3.295
  46. Park, S., Kim, C., Lee, D., Song, D. H., Cheon, K. C., Lee, H. S., Kim, S. J., Kim, J. C. and Lee, S. Y. 2017. Construction of Bacillus thuringiensis simulant strains suitable for environmental release. Appl. Environ. Microbiol. 83:e00126-17.
  47. Peano, C., Tala, A., Corti, G., Pasanisi, D., Durante, M., Mita, G., Bicciato, S., De Bellis, G. and Alifano, P. 2012. Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain. Microb. Cell Fact. 11:32. https://doi.org/10.1186/1475-2859-11-32
  48. Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L. and Adam, V. 2017. Nanoparticles based on essential metals and their phytotoxicity. J. Nanobiotechnology 15:33. https://doi.org/10.1186/s12951-017-0268-3
  49. Sekhon, B. S. 2014. Nanotechnology in agri-food production: an overview. Nanotechnol. Sci. Appl. 7:31-53. https://doi.org/10.2147/NSA.S39406
  50. Setlow, B., Atluri, S., Kitchel, R., Koziol-Dube, K. and Setlow, P. 2006. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective α/β-type small acid-soluble proteins. J. Bacteriol. 188:3740-3747. https://doi.org/10.1128/JB.00212-06
  51. Shadduck, J. A. 1983. Some considerations on the safety evaluation of nonviral microbial pesticides. Bull. World Health Organ. 61:117-128.
  52. Slama, H. B., Cherif-Silini, H., Chenari Bouket, A., Qader, M., Silini, A., Yahiaoui, B., Alenezi, F. N., Luptakova, L., Triki, M. A., Vallat, A., Oszako, T., Rateb, M. E. and Belbahri, L. 2019. Screening for Fusarium antagonistic bacteria from contrasting niches designated the endophyte Bacillus halotolerans as plant warden against Fusarium. Front. Microbiol. 9:3236. https://doi.org/10.3389/fmicb.2018.03236
  53. Smibert, R. M. and Krieg, N. R. 1994. Phenotypic characterization. In: Methods for general and molecular bacteriology, eds. by P. Gerhardt, R. G. E. Murray, W. A. Wood and N. R. Krieg, pp. 611-654. American Society for Microbiology, Washington, DC, USA.
  54. Storek, K. M., Chan, J., Vij, R., Chiang, N., Lin, Z., Bevers, J., 3rd, Koth, C. M., Vernes, J.-M., Meng, Y. G., Yin, J., Wallweber, H., Dalmas, O., Shriver, S., Tam, C., Schneider, K., Seshasayee, D., Nakamura, G., Smith, P. A., Payandeh, J., Koerber, J. T., Comps-Agrar, L. and Rutherford, S. T. 2019. Massive antibody discovery used to probe structure-function relationships of the essential outer membrane protein LptD. eLife 8:e46258. https://doi.org/10.7554/eLife.46258
  55. Sundaramoorthy, S., Karthiba, L., Raguchander, T. and Samiyappan, R. 2013. Ecofriendly approaches of potential microbial bioagents in management of sheath rot disease in rice caused by Sarocladium oryzae (Sawada). Plant Pathol. J. (Faisalabad) 12:98-103. https://doi.org/10.3923/ppj.2013.98.103
  56. Thomas, V., Herrera-Rimann, K., Blanc, D. S. and Greub, G. 2006. Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl. Environ. Microbiol. 72:2428-2438. https://doi.org/10.1128/AEM.72.4.2428-2438.2006
  57. Van der Ent, S., Van Wees, S. C. M. and Pieterse, C. M. J. 2009. Jasmonate signaling in plant interactions with resistanceinducing beneficial microbes. Phytochemistry 70:1581-1588. https://doi.org/10.1016/j.phytochem.2009.06.009
  58. Vazquez-Figueroa, E., Chaparro-Riggers, J. and Bommarius, A. S. 2007. Development of a thermostable glucose dehydrogenase by a structure-guided consensus concept. Chembiochem 8:2295-2301. https://doi.org/10.1002/cbic.200700500
  59. Vettori, C., Gallori, E. and Stotzky, G. 2000. Clay minerals protect bacteriophage PBS1 of Bacillus subtilis against inactivation and loss of transducing ability by UV radiation. Can. J. Microbiol. 46:770-773. https://doi.org/10.1139/w00-055
  60. Wang, H., Shan, W., Hu, H., Li, Y., Wang, Q., Wang, K. and Bian, F. 2020. Control effect of mixed inoculation of different biocontrol strains on Botrytis cinerea. Chin. J. Biol. Control 36:265-271 (in Chinese).
  61. Yamamoto, S. and Harayama, S. 1995. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 61:1104-1109. https://doi.org/10.1128/aem.61.3.1104-1109.1995
  62. Zaki, O., Weekers, F., Thonart, P., Tesch, E., Kuenemann, P. and Jacques, P. 2020. Limiting factors of mycopesticide development. Biol. Control 144:104220. https://doi.org/10.1016/j.biocontrol.2020.104220
  63. Zeng, Y., Li, L., Zhu, T., Han, S. and Li, S. 2020. First report of brown leaf spot disease caused by Nigrospora guilinensis on Phellodendron chinense in China. Plant Dis. 104:2518.
  64. Zeriouh, H., de Vicente, A., Perez-Garcia, A. and Romero, D. 2014. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ. Microbiol. 16:2196-2211. https://doi.org/10.1111/1462-2920.12271