DOI QR코드

DOI QR Code

Characterization of Anodized Al 1050 with Electrochemically Deposited Cu, Ni and Cu/Ni and Their Behavior in a Model Corrosive Medium

  • Girginov, Christian (Department of Physical Chemistry, University of Chemical Technology and Metallurgy) ;
  • Kozhukharov, Stephan (Laboratory for Advanced Materials Research, University of Chemical Technology and Metallurgy) ;
  • Tsanev, Alexander (Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences) ;
  • Dishliev, Angel (Department of Mathematics, University of Chemical Technology and Metallurgy)
  • Received : 2020.07.21
  • Accepted : 2020.10.06
  • Published : 2021.05.28

Abstract

The specific benefits of the modified films formed on preliminary anodized aluminum, including the versatility of their potential applications impose the need for evaluation of the exploitation reliability of these films. In this aspect, the durability of Cu and Ni modified anodized aluminum oxide (AAO) films on the low-doped AA1050 alloy was assessed through extended exposure to a 3.5% NaCl model corrosive medium. The electrochemical measurements by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) after 24 and 720 hours of exposure have revealed that the obtained films do not change their obvious barrier properties. In addition, supplemental analyses of the coatings were performed, in order to elucidate the impact of the AC-deposition of Cu and Ni inside the pores. The scanning electron microscopy (SEM) images have shown that the surface topology is not affected and resembles the typical surface of an etched metal. The subsequent energy dispersive X-ray spectroscopy (EDX) tests have revealed a predominance of Cu in the combined AAO-Cu/Ni layers, whereas additional X-ray photoelectron (XPS) analyses showed that both metals form oxides with different oxidation states due to alterations in the deposition conditions, promoted by the application of AC-polarization of the samples.

Keywords

Acknowledgement

The authors would like to express their gratitude to the Bulgarian National Scientific Fund for the financial support under contract No. KП-06-M 38/1 (2019).

References

  1. W. J. Stepniowski, Current Nanoscience, 2018, 15(1), 3-5. https://doi.org/10.2174/157341371501181205103558
  2. T. Kikuchi, A. Takenaga, S. Natsui, R. O. Suzuki, Surf. Coat. Technol., 2017, 326, 72-78. https://doi.org/10.1016/j.surfcoat.2017.07.043
  3. T. Kikuchi, D. Nakajima, O. Nishinaga, S. Natsui, R. O. Suzuki, Curr. Nanosci., 2015, 11, 560-571. https://doi.org/10.2174/1573413711999150608144742
  4. A. Nowak-Stepniowska, Curr. Nanosci., 2015, 11(5), 581-592. https://doi.org/10.2174/1573413711666150415225311
  5. A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W. Z. Misiolek, J. Memb. Sci., 2008, 319(1-2), 192-198. https://doi.org/10.1016/j.memsci.2008.03.044
  6. M. Sepulveda, J. G. Castano, F. Echeverria, Appl. Surf. Sci., 2018, 454, 210-217. https://doi.org/10.1016/j.apsusc.2018.05.081
  7. W. J. Stepniowski, M. Moneta, M. Norek, M. Michalska-Domanska, A. Scarpellini, M. Salerno, Electrochim. Acta, 2016, 211, 453-460. https://doi.org/10.1016/j.electacta.2016.06.076
  8. T. Kikuchi, O. Nishinaga, S. Natsui, R. O. Suzuki, Electrochim. Acta, 2015, 156, 235-243. https://doi.org/10.1016/j.electacta.2014.12.171
  9. K. Giffard, L. Arurault, Ch. Blanc, D. Di Caprio, Surf. Interface Anal., 2018, 51(12), 1184-1193. https://doi.org/10.1002/sia.6606
  10. I. Belca, B. Kasalica, Lj. Zekovic, B. Jovanic, R. Vasilic, Electrochim. Acta, 1999, 45(6), 993-996. https://doi.org/10.1016/S0013-4686(99)00284-4
  11. K. Chernyakova, B. Tzaneva, I. Vrublevsky, V. Videkov, J. Electrochem. Soc., 2020, 167(10), 103506. https://doi.org/10.1149/1945-7111/ab9d65
  12. H-H. Shih, Y-C. Huang, J. Mater. Process. Technol., 2008, 208(1-3), 24-28. https://doi.org/10.1016/j.jmatprotec.2007.12.119
  13. Ch. Girginov, I. Kanazirski, Tz. Dimitrov, V. Todorov, J. Univ. Chem. Technol. Met., 2012, 47(2), 193-196.
  14. G. Pastore, S. Montes, M. Paez, J. H. Zagal, Thin Solid Films., 1989, 173(2), 299-308. https://doi.org/10.1016/0040-6090(89)90146-6
  15. M. J. L. Kishore, D. H. Kim, J. Catalysts and Catalysis, 2014, 1(1), 23-28.
  16. V. Milusheva, T. Karagyozov, B. Tzaneva, V. Videkov, International Conference on High Technology for Sustainable Development., 2018, 18308424.
  17. S. Wang, Y. Tian, C. Wang, C. Hang, H. Zhang, Y. Huang, Z. Zheng, ACS Omega, 2019, 4(4), 6092-6096. https://doi.org/10.1021/acsomega.8b03533
  18. A. Venkatesan, E. S. Kannan, Curr. Appl. Phys., 2017, 17(5), 806-812. https://doi.org/10.1016/j.cap.2017.03.005
  19. V. Milusheva, M. Georgieva, B. Tzaneva, M. Petrova, IEEE XXVII International Scientific Conference Electronics (ET)., 2018, 18289006
  20. H-C. Chuang, G-Y. Hong, J. Sanchez, Mater. Sci. Semicond. Process., 2016, 45, 17-26 https://doi.org/10.1016/j.mssp.2016.01.009
  21. A. Wazwaz, J. Salmi, R. Bes, Energ. Convers. Manage., 2010, 51(8), 1679-1683. https://doi.org/10.1016/j.enconman.2009.11.047
  22. A. Andersson, O. Hunderi, C. G. Granqvist, J. Appl. Phys., 1980, 51, 752-763.
  23. S. N. Kumar, L. K. Malhotra, K. L. Chopra, Sol. Energy Mater., 1980, 3(4), 519-532. https://doi.org/10.1016/0165-1633(80)90003-9
  24. S. N. Kumar, L. K. Malhotra, K. L. Chopra, Sol. Energy Mater., 1983, 7(4), 439-452. https://doi.org/10.1016/0165-1633(83)90017-5
  25. M. Zemanova, M. Chovancova, Z. Galikova, P. Krivosik, Renew. Energ., 2008, 33(10), 2303-2310. https://doi.org/10.1016/j.renene.2008.01.005
  26. M. Zemanova, M. Chovancova, P. Krivosik, Chem. Pap., 2009, 63(1), 62-70. https://doi.org/10.2478/s11696-008-0081-4
  27. M. Zemanova, M. Gal, E. Usak, J. Jurisova, J. Appl. Electrochem., 2010, 40(5), 981-988. https://doi.org/10.1007/s10800-009-9981-4
  28. T. Bostrom, E. Wackelgard, G. Westin, Sol. Energy, 2003, 74(6), 497-503. https://doi.org/10.1016/S0038-092X(03)00199-3
  29. M. P. Proenca, C. T. Sousa, J. Ventura, M. Vazquez, J. P. Araujo, Electrochim. Acta, 2012, 72, 215-221. https://doi.org/10.1016/j.electacta.2012.04.036
  30. I. Kanazirski, Ch. Girginov, A. Girginov, Adv. Natur. Sci., 2012, 1, 45-51.
  31. M. Jitaru, A-M. Toma, M-C. Tertis, A. Trifoi, Environ. Eng. Manag. Jour., 2009, 8(4).
  32. H. Wei, H. Hu, M. Chang, Y. Zhang, D. Chen, M. Wang, Ceram. Internat., 2017, 43(15), 12472-12479. https://doi.org/10.1016/j.ceramint.2017.06.117
  33. W. Zhang, W. Li, L. Zhang, S. Yao, Acta Physico-Chimica Sinica, 2006, 22(8), 977-980. https://doi.org/10.1016/S1872-1508(06)60043-0
  34. Y-G. Guo, Li-Jun Wan, J-R. Gong, C-L. Bai, Phys. Chem. Chem. Phys., 2002, 4(14), 3422-3424. https://doi.org/10.1039/b201332k
  35. C. A. Girginov, S. V. Kozhukharov, M. J. Milanes, Bulg. Chem. Commun., 2018, 50(A), 6-12.
  36. B. Priet, G. Odemer, V. Blanc, K. Giffard, L. Arurault, Surf. Coat. Technol., 2016, 307, 206-219. https://doi.org/10.1016/j.surfcoat.2016.07.083
  37. S. V. Kozhukharov, Ch. Girginov, J. Electrochem. Sci. Eng., 2018, 8(2), 113-127.
  38. P. Ramana Reddy, K. M. Ajith, N. K. Udayashankar, Ceram. Int., 2016, 42(15), 17806-17813. https://doi.org/10.1016/j.ceramint.2016.08.109
  39. S. Rossi, M. Bizzotto, F. Deflorian, M. Fedel, Surf. Interface Anal., 2019, 51, 1194-1206. https://doi.org/10.1002/sia.6610
  40. B. Zhu, C. Zanella, Mater. Design, 2019, 173, 107764. https://doi.org/10.1016/j.matdes.2019.107764
  41. M. Sarraf, B. Nasiri-Tabrizi, A. Dabbagh, W. J. Basirun, N. L. Sukiman, Ceram. Int., 2020, 46(6), 7306-7323. https://doi.org/10.1016/j.ceramint.2019.11.227
  42. Y. Ma, H. Wu, X. Zhou, K. Li, Y. Liao, Z. Liang, L. Liu, Corros. Sci., 2019, 158, 108110. https://doi.org/10.1016/j.corsci.2019.108110
  43. H. Shi, M. Yu, J. Liu, G. Rong, R. Du, J. Wang, S. Li, Corros. Sci., 2020, 108642.
  44. B. Zhu, M. Fedel, N-E. Andersson, P. Leisner, F. Deflorian, C. Zanella, J. Electrochem. Soc., 2017, 164(7), C435. https://doi.org/10.1149/2.1631707jes
  45. M. Michalska-Domanska, W. J. Stepniowski, L. R. Jaroszewicz, J. Porous Mater., 2017, 24(3) 779-786. https://doi.org/10.1007/s10934-016-0316-7
  46. S. D. Dahlgren, Metallurgical Transactions A, 1977, 8, 347-351. https://doi.org/10.1007/BF02661649
  47. S. Thongmee, H. L. Pang, J. Ding, J. B. Yi, J. Y. Lin, IEEE Trans Nanotechnol., 2008, 1116-1120.
  48. B. Hamrakulov, I-S. Kim, M. G. Lee, B. H. Park, Trans. Nonferrous Met. Soc. China, 2009, 19, s83-s87. https://doi.org/10.1016/S1003-6326(10)60250-6
  49. B. R. Tzaneva, A. I. Naydenov, S. Z. Todorova, V. H. Videkov, V. S. Milusheva, P. K. Stefanov, Electrochim. Acta, 2016, 191, 192-199. https://doi.org/10.1016/j.electacta.2016.01.063
  50. R. P. Gautam, H. Pan, F. Chalyavi, M. J. Tucker, C. J. Barile, Catal. Sci. Technol., 2020, 10, 4960-4967. https://doi.org/10.1039/D0CY00427H
  51. X. Du, Y. Yang, C. Yi, Y. Chen, C. Cai, Z. Zhang, J. Nanosci. Nanotechnol., 2018, 18(7)865-4875. https://doi.org/10.1166/jnn.2018.13966
  52. X. Liu, B. Shen, P. Yuan, D. Patel, C. Wu, Energy Procedia, 2017, 142, 525-530. https://doi.org/10.1016/j.egypro.2017.12.082
  53. D. H. Kim, J. H. Kim, Y. S. Jang, J. C. Kim, Int. J Hydrog. Energy, 2019, 44(20), 9873-9882. https://doi.org/10.1016/j.ijhydene.2018.11.009
  54. E.L. Reddy, H. C. Lee, D. H. Kim, Int. J. Hydrog. Energy, 2015, 40(6), 2509-2517. https://doi.org/10.1016/j.ijhydene.2014.12.094
  55. X. Liu, H. Sun, C. Wu, D. Patel, J. Huang, Energy Fuels, 2018, 32(4), 4511-4520. https://doi.org/10.1021/acs.energyfuels.7b03160
  56. J. Karuppiah, E. L. Reddy, Y. S. Mok, Catalysts, 2016, 6(10), 154. https://doi.org/10.3390/catal6100154
  57. E. L. Reddy, J. Karuppiah, H. C. Lee, D. H. Kim, J. Power Sources, 2014, 268, 88-95. https://doi.org/10.1016/j.jpowsour.2014.05.082
  58. H-M. Zhang, Y-G. Guo, L-J. Wan, C-L. Bai, Chem. Commun., 2003, 24, 3022-3023. https://doi.org/10.1039/B309624F
  59. J. H. Kim, Y. S. Jang, J. C. Kim, D. H. Kim, Korean J. Chem. Eng., 2019, 36(6), 368-376. https://doi.org/10.1007/s11814-018-0211-9
  60. P. Sivakumar, P. Subramanian, T. Maiyalagan, A. Gedanken, A. Schechter, Mat. Chem. Phys., 2019, 229, 90-196.
  61. X. Gao, Y. Wang, W. Li, F. Li, H. Arandiyan, H. Sun, Y. Chen, Electrochim. Acta, 2018, 283 1277-1283. https://doi.org/10.1016/j.electacta.2018.07.033
  62. L. Duan, H. Liu, H. Wu, D. Yu, L. Huang, J. Porous Mater., 2019, 26(3), 855-860. https://doi.org/10.1007/s10934-018-0675-3
  63. L. Yang, L. Pastor-Perez, S. Gu, A. Sepulveda-Escribano, T. R. Reina, Appl. Catal. B, 2018, 232, 464-471. https://doi.org/10.1016/j.apcatb.2018.03.091
  64. M. A. Iqbal, L. Sun, A. M. LaChance, H. Ding, M. Fedel, Dalton Trans., 2020, 49(13), 3956-3964. https://doi.org/10.1039/c9dt01773a
  65. M. A. Iqbal, L. Sun, H. Asghar, M. Fedel, Coatings, 2020, 10(4), 384. https://doi.org/10.3390/coatings10040384
  66. M. A. Iqbal, L. Sun, A. T. Barrett, M. Fedel, Coatings, 2020, 10(4), 428. https://doi.org/10.3390/coatings10040428
  67. Ch. Girginov, S. Kozhukharov, M. Milanes, M. Machkova, Mater. Chem. Phys., 2017, 198, 137-144.
  68. K. Ignatova, S. Kozhukharov, M. Alakushev, Mater. Chem. Phys., 2018, 219, 175-181. https://doi.org/10.1016/j.matchemphys.2018.08.025
  69. S. V. Kozhukharov, C. A. Girginov, Phenomena and Theories in Corrosion Science. Methods of Prevention., 2019.
  70. S. Kozhukharov, Ch. Girginov, I. Avramova, M. Machkova, Mater. Chem. Phys., 2016, 180, 301-313. https://doi.org/10.1016/j.matchemphys.2016.06.011
  71. Ch. Girginov, S. Kozhukharov, D. Kiradzhiyska, R. Mancheva, Electrochim. Acta, 2018, 292, 614-627. https://doi.org/10.1016/j.electacta.2018.08.152
  72. S. Kozhukharov, Ch. Girginov, A. Tsanev, M. Petrova, J. Electrochem. Soc., 2019, 166(10), C231. https://doi.org/10.1149/2.0461910jes
  73. B. A. Boukamp, Solid State Ion., 1986, 18, 136-140. https://doi.org/10.1016/0167-2738(86)90100-1
  74. J. E. B. Randles, Discuss. Faraday Soc., 1947, 1, 11-19. https://doi.org/10.1039/df9470100011
  75. A. Lasia, In Modern Aspects of Electrochemistry., 2002, 143-248.
  76. E. J. W. Verwey, Physica, 1935, 2(12), 1059-1063. https://doi.org/10.1016/S0031-8914(35)90193-8
  77. D. Vermilyea, J. Electrochem. Soc. 1957, 104(7), 427- 433. https://doi.org/10.1149/1.2428618
  78. C. P. Bean, J. C. Fisher, D. A. Vermilyea, Phys. Rev. 1956, 101(2), 551. https://doi.org/10.1103/PhysRev.101.551
  79. J. F. J. Dewald, Phys. and Chem. Solids, 1957, 2, 55-66. https://doi.org/10.1016/0022-3697(57)90006-9
  80. G. D. Sulka, Nanostructured Materials in Electrochemistry., 2008, 1, 1-116.
  81. R. Abdel-Karim, S. M. El-Raghy, 7 Fabrication of Nanoporous Alumina., 2016.
  82. C. Girginov, S. Kozhukharov, Aluminium Oxide: Structure, Production and Applications., 2020, 1-108.
  83. C. E. Mortimer, U. Mueller, Chemie., 2010, 353-355.
  84. M. Carnes, D. Buccella, J. Chen, A. Ramirez, N. Turro, C. Nuckolls, M. Steigerwald, Angewandte Chemie Internat. Ed. 2009, 48(2), 290-294. doi:10.1002/anie.20080443
  85. S. Kozhukharov, V. Kozhukharov, M. Wittmar, M. Schem, M. Aslan, H. Caparrotti, M. Veith, Prog. Org. Coat., 2011, 71(2), 198-205. https://doi.org/10.1016/j.porgcoat.2011.02.013
  86. K. Shimizu, H. Habazaki, P. Skeldon, G.E. Thompson, G.C. Wood, Electrochim. Acta 2000, 45(11), 1805-1809. https://doi.org/10.1016/S0013-4686(99)00397-7
  87. P. Prieto-Cortes, R. Alvarez-Tamayo, M. Garcia-Mendez, M. Duran-Sanchez, Sensors (Basel), 2019, 19(19), 4189. https://doi.org/10.3390/s19194189
  88. N. Reddy, P. Bera, V. R. Reddy, N. Sridhara, A. Dey, C. Anandan, A. K. Sharma, Ceram. Internat., 2014, 40(7), 11099-11107. https://doi.org/10.1016/j.ceramint.2014.03.133
  89. T.A. Carlson, G.E. McGuire, J. Electron. Spectros. Relat. Phenomena, 1972, 1(2), 161-168. https://doi.org/10.1016/0368-2048(72)80029-X
  90. B.R. Strohmeier, Surf. Interface Anal., 1990, 15(1), 51-56. https://doi.org/10.1002/sia.740150109
  91. B. Barik, P. S. Nayak, L. S. K. Achary, A. Kumar, P. Dash, New J. Chem., 2020, 44(2), 322-337. https://doi.org/10.1039/C9NJ03945G
  92. M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. St. C. Smart, Appl. Surf. Sci., 2010, 257(3), 887-898. https://doi.org/10.1016/j.apsusc.2010.07.086
  93. A. P. Grosvenor, M. C. Biesinger, R. St. C. Smart, N. S. McIntyre, Surf. Sci., 2006, 600(9), 1771-1779. https://doi.org/10.1016/j.susc.2006.01.041
  94. M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, R. St. C. Smart, Surf. Interface Anal., 2009, 41(4), 324-332. https://doi.org/10.1002/sia.3026
  95. A. F. Carley, S. D. Jackson, J. N. O'Shea, M. W. Roberts, Surf. Sci., 1999, 440(3), L868-L874. https://doi.org/10.1016/S0039-6028(99)00872-9
  96. S. Hufner, Photoelectron spectroscopy, Solid State Science Series, 1995, 82.
  97. G. D. Park, J. S. Cho, Y. C. Kang, Nanoscale, 2015, 7(40), 16781-16788. https://doi.org/10.1039/c5nr04252f
  98. S. Zhao, S. Guo, C. Zhu, J. Gao, H. Li, H. Huang, Y. Liu, Z. Kang, RSC Advances, 2017, 7(3), 1376-1381. https://doi.org/10.1039/C6RA26868D
  99. X.-J. Zhang, S.-W. Wang, G.-S. Wang, Z. Li, A.-P. Guo, J.-Q. Zhu, D.-P. Liu, P.-G. Yin, RSC Advances, 2017, 7(36), 22454-22460. https://doi.org/10.1039/C7RA03260A