DOI QR코드

DOI QR Code

Characteristics of Tide-induced Flow and its Effect on Pollutant Patterns Near the Ocean Outfall of Wastewater Treatment Plants in Jeju Island in Late Spring

제주도 하수처리장 해양방류구 인근해역의 늦은 봄철 조류 특성과 조석잔차류에 의한 오염물질의 분포 특성

  • KIM, JUN-TECK (Jeju Special Self-Governing Provincial Council) ;
  • HONG, JI-SEOK (Department of Earth and Marine Science, College of Ocean Sciences, Jeju National University) ;
  • MOON, JAE-HONG (Department of Earth and Marine Science, College of Ocean Sciences, Jeju National University) ;
  • KIM, SANG-HYUN (Eco Environmental & Biological Engineering Research Lab) ;
  • KIM, TAE-HOON (Department of oceanography, Faculty of Earth Systems and Environmental Sciences, Chonnam National University) ;
  • KIM, SOO-KANG (Ocean and Fisheries Research Institute)
  • 김준택 (제주특별자치도의회) ;
  • 홍지석 (제주대학교 지구해양과학과) ;
  • 문재홍 (제주대학교 지구해양과학과) ;
  • 김상현 ((주)에코이엔비) ;
  • 김태훈 (전남대학교 지구환경과학부) ;
  • 김수강 (제주특별자치도 해양수산연구원)
  • Received : 2020.09.17
  • Accepted : 2021.05.20
  • Published : 2021.05.31

Abstract

In this study, we investigated the tide-induced flow patterns near the ocean outfall of the Jeju and Bomok Wastewater Treatment Plants (WTP) in Jeju Island by using measurements of Acoustic Doppler Current Meter (ADCP) and a numerical experiment with inserting passive tracer into a regional ocean model. In late spring of 2018, the ADCP measurements showed that tidal currents dominate the flow patterns as compared to the non-tidal components in the outfall regions. According to harmonic analysis, the dominant type of tides is mixed of diurnal and semi-diurnal but predominantly semidiurnal, showing stronger oscillations in the Jeju WTP than those in the Bomok WTP. The tidal currents oscillate parallel to the isobath in both regions, but the rotating direction is different each other: an anti-clockwise direction in the Jeju WTP and a clockwise in the Bomok WTP. Of particular interest is the finding that the residual current mainly flows toward the coastline across the isobath, especially at the outfall of the Bomok WTP. Our model successfully captures the features of tidal currents observed near the outfall in both regions and indicates possibly high persistent pollutant accumulation along the coasts of Bomok.

이 연구에서는 2018년 늦은 봄철을 대상으로, 제주도내 위치한 제주와 보목 하수처리장의 해양방류구 주변 해역의 하수처리 방류수의 이동 특성을 파악하기 위하여 다층 유향·유속계 (Acoustic Doppler Current Meter; ADCP)와 지역규모 해양 수치모델의 가상 추적자 실험을 활용한 분석을 수행하였다. ADCP관측 결과에 의하면 두 하수처리장 모두 방류구 인근 해역의 해수 유동은 비조석 성분 보다 조석 성분이 컸고, 조류는 등수심선과 평행한 방향의 왕복성 운동이 지배적이었다. 조화 분석결과는 제주와 보목 하수처리장 해역 모두 반일주기 유속 성분이 우세한 혼합형 조석특성이 지배적이지만, 보목 하수처리장 주변의 유속 세기가 제주 하수처리장 유속의 50% 정도로 느리고, 조류의 회전성이 제주는 시계 방향, 보목의 경우 반시계 방향으로 지역적으로 차이를 보인다. 특히, 보목 하수처리장 방류구 주변해역은 상대적으로 느린 유속과 더불어 잔차류가 등수심선을 가로질러 연안으로 향하기 때문에 해안을 따라 오염물질이 집적되는데 유리한 환경이다. 고해상도 수치실험은 유속·유향 현장 관측 결과와 유사한 해수 유동 특성을 잘 모의하였으며, 오염물질의 이동확산을 파악하기 위한 추적자 실험을 통하여 잔차성분이 연안을 향하는 보목 하수처리장 연안에서 오염물질 잔류량이 상대적으로 높아질 수 있음을 제시하였다. 이러한 결과는 늦은 봄철에 보목 하수처리장 인근 해역이 상대적으로 약한 조류와 연안을 향하는 잔차성분의 영향으로 하수처리 방류수에 의한 연안 오염 가능성이 높은 환경임을 제시하는 결과이다. 퇴적유기물 조사에서도 보목하수처리장 인근 연안은 중간오염 단계를 보임으로써 조석 잔자류에 의한 연안 오염물질 축적과 그에 따른 연안환경오염의 가능성을 뒷받침하고 있다.

Keywords

Acknowledgement

이 논문은 2020년 제주대학교 연구교수 기간에 연구되었음.

References

  1. 국립수산과학원 제주수산연구소, 2008. 제주연안 갯녹음어장 복원연구.
  2. 제주특별자치도 상하수도본부, 2018. 광역 하수도정비 기본계획(변경) 보고서.
  3. Cha, S.C. and J.H. Moon, 2020. Current Systems in the Adjacent Seas of Jeju Island Using a High-Resolution Regional Ocean Circulation Model. Ocean and Polar Research, 42(3): 211-223.
  4. Chang, W.K., J.J. Nam and K.W. Han, 2012. Advancement of Land-Based Pollutant Management System. Korea Maritime Institute, 1-81.
  5. Charnock, H., 1955. Wind stress on a water surface. Q J R Meteorol Soc, 81(350): 639-640. https://doi.org/10.1002/qj.49708135027
  6. Egbert, G.D. and S.Y. Erofeeva, 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183-204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
  7. Fairall, C.W., E.F. Bradley, D.P. Rogers, J.B. Edson and G.S. Young, 1996. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J Geophys Res Oceans, 101(C2): 3747-3764. https://doi.org/10.1029/95JC03205
  8. Foreman, M.G.G., 1977. Manual for Tidal Heights Analysis and Prediction. Pacific Marine Science Report. 77-10. Institute of Ocean Sciences, Patricia Bay, British Columbia, Canada, pp 58.
  9. Haidvogel, D.B., H. Arango, W.P. Budgell, B.D. Cornuelle, E. Curchitser, E. Di Lorenzo and J. Levin, 2008. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics, 227(7): 3595-3624. https://doi.org/10.1016/j.jcp.2007.06.016
  10. Hwang, S.I., D.K. Kim, B.J. Ssung, S.K. Jun, J.I. Bae and B.H. Jeon, 2017. Effects of Climate Change on Whitening Event Proliferation the Coast of Jeju. Korean Journal of Environment and Ecology, 31(6): 529-536. https://doi.org/10.13047/KJEE.2017.31.6.529
  11. Jung, T.S. and S.W. Kang, 2009. Diffusion analysis for optimal design of ocean outfall system. Journal of the Korean Society for Marine Environment & Energy, 12(3): 124-132.
  12. Jung, W.S., S.J. Hong, W.C. Lee, H.C. Kim, J.H. Kim and D.M. Kim, 2019. Modeling the Resident Characteristics of Land-Based Pollutant Inflow to Suyeong Bay. Journal of the Korean Society of Marine Environment & Safety, 25(1): 45-57. https://doi.org/10.7837/kosomes.2019.25.1.045
  13. Kang, J.H., 2003. Characteristics of the long-term ADCP currents observed in the Strait, Korea. M.S.Thesis, Jeju National University, Jeju, 320 pp.
  14. Kang, S.W., S.H. You, S.I. Kim, B.C. Oh and K.S. Park, 2001. Concentration Changes of Wastewater Effluent Discharge in the Mixing Zone of Masan Sea Outfall. Journal of the Korean Society for Marine Environment & Energy, 4(2): 15-24.
  15. Kim, S.K., J.W. Ahn, S.W. Kang, S.L. Yun, J. Lee, J.K. Lee, J.H. Lim, D.S. Kim and T.Y. Lee, 2013. Estimation of contamination level of sediments at the below of Busan Gwang-an Bridge. Journal of Korean Society of Environmental Engineers, 35(11): 809-814. https://doi.org/10.4491/KSEE.2013.35.11.809
  16. Kim, S.K., T.Y. Lee, J.H. Song and J.K. Lee, 2009. Evaluation of Organic Sediments Qualities for the Urban Streams in the Busan City. Journal Of Korean Society Of Environmental Engineers, 31(11): 975-982.
  17. Koh, H.J., S.E. Park, H.K. Cha, D.S. Chang and J.H. Koo, 2013. Coastal Eutrophication caused by Effluent from Aquaculture Ponds in Jeju. Journal of the Korean Society of Marine Environment and Safety, 19(4): 315-326. https://doi.org/10.7837/kosomes.2013.19.4.315
  18. Korean Statistical Information Service (KOSIS), 2019. Preliminary Results of the Fishery Production Survey in 2018.
  19. Kumar, N., G. Voulgaris, J.C. Warner and M. Olabarrieta, 2012. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Modelling, 47: 65-95. https://doi.org/10.1016/j.ocemod.2012.01.003
  20. Lee, J., J. Lim, K. Han and T.Y. Lee, 2014. Characterization of marine sediments obtained near Hansan Island of South Sea. Journal of Korea Society of Waste Management, 31(4): 1-8. https://doi.org/10.9786/kswm.2014.31.1.1
  21. Lee, J.Y., W.J. Yang, H.J. Jeong, D.J. Seo and J.C. Lee, 2017. Distribution and Pollution Assessment of River Sediments Flowing into the Jeju Coast. J. Korean Soc. Urban Environ, 17: 409-417.
  22. Lee, M.K., W.B. Bae, I.K. Um and H.S. Jung, 2004. Characteristics of Heavy Metal Distribution in Sediments of Youngil Bay, Korea. Journal of Korean Society of Environmental Engineers, 26(5): 543-551.
  23. Marchesiello, P., J.C. McWilliams and A. Shchepetkin, 2001. Open boundary conditions for long-term integration of regional oceanic models. Ocean modelling, 3(1-2), 1-20. https://doi.org/10.1016/S1463-5003(00)00013-5
  24. Park, S.J., J.W. Kang, Y.S. Kim and S.R. Moon, 2010. Applicability of coupled tide-surge model. Journal of Korean Society of Coastal and Ocean Engineers, 22(4): 248-257.
  25. Pawlowicz, R., B. Beardsley, S. Lentz, 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8): 929-937. https://doi.org/10.1016/S0098-3004(02)00013-4
  26. Seong, K.T., J.D. Hwang, I.S. Han, W.J. Go, Y.S. Suh and J.Y. Lee, 2010. Characteristic for long-term trends of temperature in the Korean waters. Journal of the Korean Society of Marine Environment & Safety, 16(4): 353-360.
  27. Shchepetkin, A.F. and J.C. McWilliams, 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean modelling, 9(4): 347-404. https://doi.org/10.1016/j.ocemod.2004.08.002
  28. Shin, B.S. and K.H. Kim, 2020. Effects of Coastal Environment by Discharge from the Sewage Treatment Plant. Journal of the Korean Society of Civil Engineers, 40(1): 127-133. https://doi.org/10.12652/Ksce.2020.40.1.0127
  29. Song, Y. and D. Haidvogel, 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. Journal of Computational Physics, 115(1): 228-244. https://doi.org/10.1006/jcph.1994.1189
  30. Warner, J.C., B. Armstrong, R. He and J.B. Zambon, 2010. Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean modelling, 35(3): 230-244. https://doi.org/10.1016/j.ocemod.2010.07.010
  31. Yoo, H.M., J.Y. Park, Y.S. Song, E.J. Lee, S.Y. Kang, J.H. Kim, M.J. Park, Y.J. Byun, H.W. Sung, H.K. Oh, H.Y. Yoon, S.H. Lee and S.Y. Jung, 2016. A Study on coralline flat phenomenon of Korea. The Journal of Applied Geography, (33): 79-102.
  32. You, H.Y., 2010. Characteristics of tide and tidal current in the Southwestern sea of Korea, Korea. M.S.Thesis, Inha University, Incheon, 9-24 pp.