DOI QR코드

DOI QR Code

One-Pot Electrochemical Synthesis of Hierarchical Porous Niobium

  • Joe, Gihwan (School of Materials Science and Engineering, Pusan National University) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
  • Received : 2020.12.07
  • Accepted : 2020.12.22
  • Published : 2021.05.28

Abstract

In this study, we report niobium (Nb) with hierarchical porous structure produced by a one-pot, HF-free electrochemical etching process. It is proved experimentally that a well-defined hierarchical porous structure is produced from the combination of a limited repetition of pulse etching and high concentration of aggressive anion (i.e., SO42-), which results in hierarchical pores with high order over 3. A formula is derived for the surface area of porous Nb as a function of the hierarchical order of pores while the experimental surface area is estimated on the basis of the electrochemical gas evolution rate on porous Nb. From the comparison of the theoretical and experimental surface areas, an in-depth understanding was gained about porous structure produced in this work in terms of the actual pore shape and hierarchical pore order.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NFR-2018R1A5A1025594) of the Ministry of Science and ICT.

References

  1. D. Rosenfeld, P.E. Schmid, S. Szeles, F. Levy, V. Demarne and A. Grisel, Sens. Actuators B Chem., 1996, 37(1-2), 83-89. https://doi.org/10.1016/S0925-4005(96)01991-0
  2. L. Chambon, A. Pauly, J.P. Germain, C. Maleysson, V. Demarne and A. Grisel, Sens. Actuators B Chem., 1997, 43(1-3), 60-64. https://doi.org/10.1016/S0925-4005(97)00136-6
  3. Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan and H. Gu, Int. J. Hydrogen. Energy., 2012, 37(5), 4526-4532. https://doi.org/10.1016/j.ijhydene.2011.12.004
  4. R.A. Rani, A.S. Zoolfakar, M.F.M. Ryeeshyam, A.S Ismail, M.H. Mamat, S. Alrokayan, H. Khan, K. Kalantar-Zadeh and M.R. Mahmood, J. Electron. Mater., 2019, 48(6), 3805-3815. https://doi.org/10.1007/s11664-019-07126-5
  5. R. Ghosh, M.K. Brennaman, T. Uher, M-R. Ok, E.T. Samulski, L.E. McNeil, T.J. Meyer and R. Lopez, ACS Appl. Mater. Interfaces., 2011, 3(10), 3929-3935. https://doi.org/10.1021/am200805x
  6. X. Fang, L. Hu, K. Huo, B. Gao, L. Zhao, M. Liao, P.K. Chu, Y. Bando and D. Golberg, Adv. Funct. Mater., 2011, 21(20), 3907-3915. https://doi.org/10.1002/adfm.201100743
  7. K. Kim, J. Park, G. Cha, J.E. Yoo and J. Choi, Mater. Chem. Phys., 2013, 141(2-3), 810-815. https://doi.org/10.1016/j.matchemphys.2013.06.008
  8. V. Augustyn, P. Simon and B. Dunn, Energy Environ. Sci., 2014, 7(5), 1597-1614. https://doi.org/10.1039/c3ee44164d
  9. A.L. Viet, M.V. Reddy, R. Jose, B.V.R. Chowdari and S. Ramakrishna, J. Phys. Chem. C., 2010, 114(1), 664-671. https://doi.org/10.1021/jp9088589
  10. J.W. Kim, T. Wada, S.G. Kim and H. Kato, Mater. Lett., 2014, 116, 223-226. https://doi.org/10.1016/j.matlet.2013.11.036
  11. J. Come, V. Augustyn, J.W. Kim, P. Rozier, P-L. Taberna, P. Gogotsi, J.W. Long, B. Dunn and P. Simon, J. Electrochem. Soc., 2014, 161(5), 718-725.
  12. R.A. Rani, A.S. Zoolfakar, A.P. O'Mullane, M.W. Austin and K. Kalantar-Zadeh, J. Mater. Chem. A Mater., 2014, 2(38), 15683-15703. https://doi.org/10.1039/C4TA02561J
  13. H-C. Shin, J. Dong and M. Liu, Adv. Mater., 2003, 15(19), 1610-1614. https://doi.org/10.1002/adma.200305160
  14. H.-R. Jung, E.-J. Kim, Y.-J. Park and H.-C. Shin, J. Power Sources., 2011, 196(11), 5122-5127. https://doi.org/10.1016/j.jpowsour.2011.01.110
  15. W.-S. Choi, W. Chang and H.-C. Shin, J. Solid State Electrochem., 2014, 18(2), 427-433. https://doi.org/10.1007/s10008-013-2272-3
  16. Y.-M. Chun and H.-C. Shin, Electrochim. Acta, 2016, 209, 369-378. https://doi.org/10.1016/j.electacta.2016.05.089
  17. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Z. Zhou and Y. Yang, Electrochem. commun., 2008, 10(5), 795-797. https://doi.org/10.1016/j.elecom.2008.02.033
  18. S. Lou, X. Cheng, L. Wang, J. Gao, Q. Li, Y. Ma, Y. Gao, P. Zuo, C. Du and G. Yin, J. Power Sources., 2017, 361, 80-86. https://doi.org/10.1016/j.jpowsour.2017.06.023
  19. R.A. Rani, A.S. Zoolfakar, J.Z. Ou, M.R. Field, M. Austin and K. Kalantar-zadeh, Sens. Actuators B Chem., 2013, 176, 149-156. https://doi.org/10.1016/j.snb.2012.09.028
  20. Y.R. Lim, Y. Ko, J. Park, W.I. Cho, S.A. Lim and E.H. Cha, J. Electrochem. Sci. Technol., 2019, 10(1), 89-97. https://doi.org/10.5229/JECST.2019.10.1.89
  21. W. Zhao, W. Choi and W-S. Yoon, J. Electrochem. Sci. Technol., 2019, 11(3), 195-219. https://doi.org/10.33961/jecst.2020.00745
  22. X.W. Lou, L.A. Archer and Z. Yang, Adv. Mater., 2008, 20(21), 3987-4019. https://doi.org/10.1002/adma.200800854
  23. C. Liu, F. Li, L.P. Ma and H.M. Cheng, Adv. Mater., 2010, 22(8), 28-62.
  24. J.Z. Ou, R.A. Rani, M-H Ham, M.R. Field, Y. Zhang, H. Zheng, P. Reece. S. Zhuiykov, S. Sriram, M. Bhaskaran, R.B. Kaner and K. Kalantar-zadeh, ACS nano., 2012, 6(5), 4045-4053. https://doi.org/10.1021/nn300408p
  25. R.A. Rani, A.S. Zoolfakar, J.Z. Ou, R.A. Kadir, H. Nili, K. Latham, S. Sriram, M. Bhaskaran, S. Zhuiykov, R.B. Kaner and K. Kalantar-zadeh, ChemComm., 2013, 49(56), 6349-6351.
  26. M. Altomare, G. Cha, P. Schmuki, Electrochim. Acta., 2020, 136158.
  27. J. Choi, J.H. Lim, S.C. Lee, J.H. Chang, K.J. Kim and M.A. Cho, Electrochim. Acta., 2006, 51(25), 5502-5507. https://doi.org/10.1016/j.electacta.2006.02.024
  28. K. Lee, Y. Yang, M. Yang and P. Schmuki, Chem. Eur. J., 2012, 18(31), 9521-9524. https://doi.org/10.1002/chem.201201426
  29. J.E. Yoo and J. Choi, Electrochem. commun., 2011, 13(3), 298-301. https://doi.org/10.1016/j.elecom.2011.01.009
  30. Z. Huang, N. Geyer, P. Werner, J. Boor and U. Gosele, Ad.v Mater., 2011, 23(2), 285-308. https://doi.org/10.1002/adma.201001784
  31. J.M. Dura and A. Sarangan, J Micro Nanolithogr MEMS MOEMS., 2017, 16(1), 014502. https://doi.org/10.1117/1.JMM.16.1.014502
  32. S.R. Keller, Math. Comput., 1979, 33(145), 310-314. https://doi.org/10.1090/S0025-5718-1979-0514826-4