DOI QR코드

DOI QR Code

OFDM based mimicking dolphin whistle for covert underwater communications

OFDM 기반 돌고래 휘슬음 모방 수중 은밀 통신 기법

  • Received : 2021.03.04
  • Accepted : 2021.05.11
  • Published : 2021.05.31

Abstract

This paper proposed an Orthogonal Frequency Division Multiplexing (OFDM) based biomimetic communication method using a dolphin whistle which covertly transmits communication signals to allies. The proposed method divides the dolphin whistle into several time slots corresponding to a number of OFDM symbols, and modulates the communication signal by mapping differential phase shift keying (DPSK) symbols into subcarriers that have the frequency bands of the dolphin whistle in each slot. The advantages of the proposed method are as follows: In the conventional Chirp Spread Spectrum (CSS) and Frequency Shift Keying (FSK) based biomimetic communication methods, the discontinuity of the frequency contour is large, but the proposed method can reduce the discontinuity. Even if the modulation order is increased, the degradation of the mimicking performance is small. The computer simulations demonstrate that the Bit Error Rate (BER) and mimicking performance of the proposed method are better performance than those of the conventional CSS and FSK.

본 논문에서는 적으로부터 은밀히 아군에게 통신 신호를 전송하기 위해서 Orthogonal Frequency Division Multiplexing(OFDM) 기반 돌고래 휘슬음 모방 변조 기법을 제안하였다. 제안한 방법은 돌고래 휘슬음을 여러 개의 OFDM 심볼과 대응되는 시간 슬롯들로 나눈 후, 매 슬롯에서 돌고래 휘슬음이 위치한 주파수 대역을 갖는 부반송파에 Differential Phase Shift Keying(DPSK) 심볼을 매핑하여 변조한다. 제안한 방법은 기존의 Chirp Spread Spectrum(CSS)와 Frequency Shift Keying(FSK) 기반의 돌고래 휘슬음 모방 변조 기법들에서 발생하는 주파수 윤곽의 불연속성을 줄일 수 있고, 변조 차수를 증가시켜도 모방 성능 열화량이 작다는 장점이 있다. 전산 모의실험을 통해 제안 방법의 Bit Error Rate(BER)과 모방 성능이 기존의 CSS와 FSK에 비해 우수함을 보였다.

Keywords

Acknowledgement

본 연구는 국방과학연구소의 지원으로 수행되었음(UD200010DD).

References

  1. J. Ling, H. He, J. Li, and W. Roberts, "Covert underwater acoustic communications," J. Acoust. Soc. Am. 128, 2898-2909 (2010). https://doi.org/10.1121/1.3493454
  2. R. Diamant, L. Lampe, and E. Gamroth, "Bounds for low probability of detection for underwater acoustic communication," IEEE J. Oceanic Eng. 42, 143-155 (2016). https://doi.org/10.1109/JOE.2016.2550278
  3. F. Qu, X. Qin, L. Yang, and T. C. Yang, "Spread-spectrum method using multiple sequences for underwater acoustic communications," IEEE J. Oceanic Eng. 43, 1215-1226 (2018). https://doi.org/10.1109/JOE.2017.2750298
  4. X. Shu, J. Wang, H. Wang, and X. Yang, "Chaotic direct sequence spread spectrum for secure underwater acoustic communication," Applied Acoustics, 104, 57-66 (2016). https://doi.org/10.1016/j.apacoust.2015.10.015
  5. T. C. Yang and W. B. Yang, "Low probability of detection underwater acoustic communications using direct-sequence spread spectrum," J. Acoust. Soc. Am. 124, 3632-3647 (2008). https://doi.org/10.1121/1.2996329
  6. S. Liu, T. Ma, G. Qiao, L. Ma, and Y. Yin, "Biologically inspired covert underwater acoustic communication by mimiking dolphin whistles," Applied Acoustics, 120, 120-128 (2017). https://doi.org/10.1016/j.apacoust.2017.01.018
  7. J. Ahn, H. Lee, Y. Kim, W. Kim, and J. Chung, "Multipath combining method for frequency shift keying underwater communications mimicking dolphin whistle" (in Korean), J. Acoust. Soc. Kr. 37, 404-411 (2018).
  8. J. Ahn, H. Lee, Y. Kim, S. Lee, and J. Chung, "Mimicking dolphin whistles with continuously varying carrier frequency modulation for covert underwater acoustic communication," Jpn. J. Appl. Phys. 58, SGGF05 (2019). https://doi.org/10.7567/1347-4065/ab14d2
  9. J. Ahn, H. Lee, Y. Kim, W. Kim, and J. Chung, "Machine learning based biomimetic underwater covert acoustic communication method using dolphin whistle contours," Sensors, 20, 6166 (2020). https://doi.org/10.3390/s20216166
  10. A. Elmosilmay, M. Zhou, T. M. Duman, and P. S. Antonia, "An underwater acoustic communication scheme exploiting biological sounds," Wireless Communications and Mobile Computing, 16, 2194-2211 (2016). https://doi.org/10.1002/wcm.2676
  11. X. Han, J. Yin, P. Du, and X. Zhang, "Experimental demonstration of underwater acoustic communication using bionic signals," Applied Acoustics, 78, 7-10 (2014). https://doi.org/10.1016/j.apacoust.2013.10.009
  12. S. Liu, M. Wang, T. Ma, G. Qiao, and M. Bilal, "Covert underwater communication by camouflaging sea piling sounds," Applied Acoustics, 142, 29-35 (2018). https://doi.org/10.1016/j.apacoust.2018.06.001
  13. H. Lee, J. Ahn, Y. Kim, S. Lee, and J. Chung, "Time-frequency modulation based mimicking dolphin whistle for covert underwater acoustic communication," Jpn. J. Appl. Phys. 59, SKKF03 (2020). https://doi.org/10.35848/1347-4065/ab87f0
  14. H. Lee, J. Ahn, Y. Kim, S. Lee, and J. Chung, "A biomimetic communication method based on time shift using dolphin whistle" (in Korean), J. Acoust. Soc. Kr. 38, 580-586 (2019).
  15. G. V. Trunk, "Range resolution of targets using automatic detectors," IEEE Trans. on Aeropace and Electronic System, 5, 750-755 (1978). https://doi.org/10.1109/TAES.1978.308625
  16. H. Lee, S. Kim, and J. Chung, "Performance analysis of anti-jamming by CFAR detector in frequency-hopping spread spectrum systems" (in Korean), JKICS. 42, 2069-2078 (2017).
  17. H. Kim, J. Seo, J. Ahn, and J. Chung, "Snapping shrimp noise mitigation based on statistical detection in underwater acoustic orthogonal frequency division multiplexing systems," Jpn. J. Appl. Phys. 56, 07JG02 (2017). https://doi.org/10.7567/JJAP.56.07JG02
  18. Z. Messali, F. Soltani, and M. Sahmoudi, "Robust radar detection of CA, GO and SO CFAR in pearson measurements based on a non linear compression procedure for clutter reduction," Signal, Image, and Video Processing, 2, 169-176 (2008). https://doi.org/10.1007/s11760-007-0045-0
  19. H. Lee, J. Ahn, Y. Kim, and J. Chung, "Antijamming improvement for frequency hopping using noise-jammer power estimator," Applied Sciences, 10, 1733 (2020). https://doi.org/10.3390/app10051733
  20. J. Chung, E. J. Powers, W. M. Grady, and S. C. Bhatt, "Adaptive power-line disturbance detection scheme using a prediction error filter and a stop-and-go CA CFAR detector," Proc. IEEE ICASSP. 1533-1536 (1999).
  21. H. Sohn, K. J. Park, Y. R. An, S. G. Choi, Z. G. Kim, H. W. Kim, D. H. An, Y. R. Lee, and T. G. Park, "Distribution of Whales and Dolphins in Korean Waters Based on a Sighting Survey from 2000 to 2010," Korean J. Fish Aquat Sci. 45, 486-492 (2012). https://doi.org/10.5657/KFAS.2012.0486
  22. Y. C. Jung, K. H. Lee, W. Seong, and S. Kim, "Ocean bottom reverberation and its statistical characteristics in the East Sea," J. Acoust. Soc. Kr. 38, 82-95, (2019).