DOI QR코드

DOI QR Code

A result of prolonged monitoring underwater sound speed in the center of the Yellow Sea

황해 중앙부에서 수중음속의 장기간 모니터링 결과

  • Received : 2021.03.02
  • Accepted : 2021.03.23
  • Published : 2021.05.31

Abstract

A time-series variation of temperature, salinity, and underwater sound speed was analyzed using an Array for Real-time Geostrophic Oceanography (ARGO) float which autonomously collects temperature and salinity for about 10month with 2 days cycle among 12 floats in the center of the Yellow Sea. As a result, the underwater sound channel appeared below the thermocline as the surface sound channel, which is dominant in the winter season, reduced in April. Besides, for a certain time in the spring season, the sound ray reflected the sea surface frequently due to the short-term temperature inversion effect. Based on the case of successful observation of ARGO float in the shallow water, using prolonged monitoring unmanned platform may contribute to predicting sound transmission loss if the temperature inversion and sound channel including background environment focusing are investigated in the center of the Yellow Sea.

황해에 투하된 기상청 무인해양관측기기인 Array for Real-time Geostrophic Oceanography(ARGO) 플로트 12기 중 황해 중앙부에서 약 10개월간 자율적으로 이동하며 2일 주기로 심도별 수온, 염분을 측정한 1개의 플로트를 대상으로 수온, 염분과 수중음속의 시계열 변화를 관찰하였다. 그 결과 동계 표층음파통로가 전체심도에 걸쳐 형성 후 수온약층이 발달되는 4월부터 그 두께가 축소하면서 수중음파통로가 형성됨을 알 수 있었다. 또한, 표층음파통로가 지속되는 중 단기간 형성된 수온역전의 영향으로 음파통로에서의 음선경로가 수온역전이 발생하지 않을 때 보다 해수면 반사가 증가되어 나타났다. 천해에서 성공적으로 자료를 수집한 ARGO 플로트의 운용사례를 바탕으로 장기간 관측이 가능한 무인 플랫폼을 황해 중앙부에 집중 운용하여 주변 환경요소를 포함한 수온역전 및 음파통로의 규모변화를 관찰한다면 음파전달 손실 예측이 용이할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 인터넷상에 공개된 국립기상과학원의 ARGO 플로트 관측자료를 바탕으로 개인적으로 수행되었다.

References

  1. Y. H. Yun, Y. H. Park, and J. H. Bong, "Enlightenment of the characteristics of the Yellow Sea bottom cold water and its southward extension" (in Korean), J. Korean Earth Sci. Soc. 12, 25-37 (1991).
  2. H. Song, C. Cho, W. Hodgkiss, S. Nam, S. M. Kim, and B. N. Kim, "Underwater sound channel in the northeastern East China Sea," Ocean Eng. 147, 370-374 (2018). https://doi.org/10.1016/j.oceaneng.2017.10.045
  3. P. C. Chu, C. Cintron, S. D. Haeger, and R. E. Keenan, "Acoustic mine detection using the Navy's CASS-GRAB," Proc. 5th Int. Symp. on Technology and Mine Problem, Soc. 1-10 (2002).
  4. H. J. Kim, H. J. Yun, and S. G. Yang, "Inversion phenomena of temperature in the Yellow Sea" (in Korean), Bull. Korean Fish. Tech. Soc. 18, 91-96 (1982).
  5. H. J. Lie, C. H. Cho, and K. T. Jung, "Occurrence of large temperature inversion in the thermohaline frontal zone at the Yellow Sea entrance in winter and its relation to advection," J. Geophys. Res. Oceans, 120, 417-435 (2015). https://doi.org/10.1002/2014JC010653
  6. S. H. Kim, B. N. Kim, E. Kim, and B. K. Choi, "Effects of water temperature inversion layer on underwater sound propagation in the East China Sea," Proc. Symposium on Ultrasonic Electronics, 2P6-2 (2016).
  7. S. H. Kim, B. N. Kim, B. K. Choi, and E. Kim, "Comparison of acoustic wave propagation patterns according to the shape of water temperature inversion layer," Proc. Korean Soc. Noise Vib. Eng. 296 (2017).
  8. R. Oh, Y. Kim, H. R. Kim, J. W. Choi, and W. K. Kim, "Analysis of detection performance of hull mounted sonar in sound-speed inversion layer in the Yellow Sea" (in Korean), Proc. KIMST Annual Conf. 345 (2019).
  9. N. Jeong, B. Natsagdor, and H. Jung, "LTE based high-speed maritime wireless communication (LTE-M) router system" (in Korean), J. Korea Inst. Inf. Commun. Eng. 22, 542-547 (2018). https://doi.org/10.6109/JKIICE.2018.22.3.542
  10. T. G. Jung, H. L. Ko, Y. H. Cho, and T. H. Im, "Underwater communication system implementation for underwater objects internet" (in Korean), Proc. KICS Winter Conf. 1241-1242 (2019).
  11. S. H. Byun, S. M. Kim, and Y. K. Lim, " Long-range sound transmission characteristics in shallow-water channel with thermocline" (in Korean), J. Acoust. Soc. Kr. 33, 273-281 (2014). https://doi.org/10.7776/ASK.2014.33.5.273
  12. K. H. Oh, Assessment of profiles and intermediate to deep level circulation of the southern part of the East Sea from Argo floats, (Ph.D. thesis, Jeju National University, 2005).
  13. K. Kim, Y. B. Kim, J. J. Park, S. Nam, K. A. Park, and K. I. Chang, "Long-term and real-time monitoring system of the East/Japan Sea" (in Korean), Ocean Sci. J. 40, 25-44 (2005). https://doi.org/10.1007/BF03023463
  14. J. J. Park,"Underwater glider: Its applicability in the East/Japan Sea" (in Korean), Ocean Polar Res. 35, 107-121 (2013). https://doi.org/10.4217/OPR.2013.35.2.107
  15. K. T. Seong, J. D. Hwang, I. S. Han, W. J. Go, Y. S. Suh, and J. Y. Lee, "Characteristic for long-term trends of temperature in the Korean waters" (in Korean), J. Korean Soc. Mar. Environ. Saf. 16, 353-360 (2010).
  16. ARGO NIMS, http://argo.nims.go.kr/argo3/argo-nims.html?lang=kr, (Last viewed February 1, 2021).
  17. H. Medwin, "Speed of sound in water: A simple equation for realistic parameters," J. Acoust. Soc. Am. 58, 1318-1319 (1975). https://doi.org/10.1121/1.380790
  18. R. P. Hodges, Underwater Acoustics: Analysis, Design and Performance of Sonar (John Wiley & Sons, West Sussex, 2010), Chap. 5.
  19. Underwater Acoustics and Sonar Signal Processing, http://homepages.hs-bremen.de/~krausd/iwss/USP1.pdf, (Last viewed January 31, 2021).
  20. S. H. Kim, " Characteristics of water temperature inversion observed in a region west of Jeju Island in April 2015" (in Korean), Ocean Polar Res. 42, 97-113 (2020).
  21. M. B. Porter, The BELLHOP Manual and User's Guide: PRELIMINARY DRAFT (Heat, Light, and Sound Research, Inc, La Jolla, 2011), Chap. 2.
  22. S. T. Jang, J. H. Lee, C. H. Kim, C. J. Jang, and Y. S. Jang, "Movement of cold water mass in the northern East China Sea in summer" (in Korean), J. Korean Soc. Oceanogr. 16, 1-13 (2011).
  23. D. Y. Jeong, S. M. Kim, S. H. Byun, and Y. K. Lim, "A study on the characteristics of underwater sound transmission by short-term variation of sound speed profiles in shallow-water channel with thermocline" (in Korean), J. Acoust. Soc. Kr. 34, 20-35 (2015). https://doi.org/10.7776/ASK.2015.34.1.020
  24. J. Hao, Y. Chen, and F. Wang, "Temperature inversion in China seas," J. Geophys. Res. Oceans. 115, C12025 (2010). https://doi.org/10.1029/2010JC006297
  25. S. Nam, Y. B. Kim, J. J. Park, and K. I. Chang, "Status and prospect of unmanned, global ocean observations network" (in Korean), J. Korean Soc. Oceanogr. 19, 202-214 (2014).
  26. R. Pinkel, M. A. Goldin, J. A. Smith, O. M. Sun, A. A. Aja, M. N. Bui, and T. Hughen, "The wirewalker: A vertically profiling instrument carrier powered by ocean waves," J. Atmos. Oceanic Technol. 28, 426-435 (2011). https://doi.org/10.1175/2010JTECHO805.1
  27. A. J. Lucas, R. Pinkel, and M. Alford, "Ocean wave energy for long endurance, broad bandwidth ocean monitoring," Oceanogr. 30, 126-127 (2017).
  28. H. Kwon, J. Kim, J. W. Choi, D. Kang, S. Cho, S. K. Jung, and K. Park, "Spatial coherence analysis of underwater ambient noise measured at the Yellow Sea" (in Korean), J. Acoust. Soc. Kr. 34, 432-443 (2015). https://doi.org/10.7776/ASK.2015.34.6.432
  29. T. Moh, N. Jang, S. Jang, and J. H. Cho, "Application of a winch-type towed acoustic sensor to a wave-powered unmanned surface vehicle," Def. Sci. J. 67, 125 (2017). https://doi.org/10.14429/dsj.67.10577
  30. Y. B. Son, T. Moh, S. K. Jung, J. D. Hwnag, H. Oh, S. H. Kim, J. H. Ryu, and J. H. Cho, "Status of ocean observation using wave glider" (in Korean), KJRS. 34, 419-429 (2018).