DOI QR코드

DOI QR Code

Effect of Korea red ginseng on nonalcoholic fatty liver disease: an association of gut microbiota with liver function

  • Hong, Ji Taek (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Lee, Min-Jung (Department of Life Science, Multidisciplinary Genome Institute, Hallym University) ;
  • Yoon, Sang Jun (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Shin, Seok Pyo (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Bang, Chang Seok (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Baik, Gwang Ho (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Kim, Dong Joon (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Youn, Gi Soo (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Shin, Min Jea (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Ham, Young Lim (Department of Nursing, Daewon University College) ;
  • Suk, Ki Tae (Institute for Liver and Digestive Diseases, Hallym University) ;
  • Kim, Bong-Soo (Department of Life Science, Multidisciplinary Genome Institute, Hallym University)
  • Received : 2020.04.08
  • Accepted : 2020.07.10
  • Published : 2021.03.01

Abstract

Background: Korea Red Ginseng (KRG) has been used as remedies with hepato-protective effects in liver-related condition. Microbiota related gut-liver axis plays key roles in the pathogenesis of chronic liver disease. We evaluated the effect of KRG on gut-liver axis in patients with nonalcoholic statohepatitis by the modulation of gut-microbiota. Methods: A total of 94 patients (KRG: 45 and placebo: 49) were prospectively randomized to receive KRG (2,000 mg/day, ginsenoside Rg1+Rb1+Rg3 4.5mg/g) or placebo during 30 days. Liver function test, cytokeraton 18, and fatigue score were measured. Gut microbiota was analyzed by MiSeq systems based on 16S rRNA genes. Results: In KRG group, the mean levels (before vs. after) of aspartate aminotransferase (53 ± 19 vs. 45 ± 23 IU/L), alanine aminotransferase (75 ± 40 vs. 64 ± 39 IU/L) and fatigue score (33 ± 13 vs. 26 ± 13) were improved (p < 0.05). In placebo group, only fatigue score (34 ± 13 vs. 31 ± 15) was ameliorated (p < 0.05). The changes of phyla were not statistically significant on both groups. In KRG group, increased abundance of Lactobacillus was related with improved alanine aminotransferase level and increased abundance of Clostridium and Intestinibacter was associated with no improvement after KRG supplementation. In placebo group, increased abundance of Lachnospiraceae could be related with aggravation of liver enzyme (p < 0.05). Conclusion: KRG effectively improved liver enzymes and fatigue score by modulating gut-microbiota in patients with fatty liver disease. Further studies are needed to understand the mechanism of improvement of nonalcoholic steatohepatitis. ClnicalTrials.gov: NCT03945123 (www.ClinicalTrials.gov).

Keywords

Acknowledgement

This research was supported by Hallym University Research Fund, the Korea Society of Ginseng funded by Korea Ginseng Corporation (Korea Red Ginseng; 2016), the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2018M3A9F3020956 and NRF-2019R1I1A3A01060447) and Hallym University Research Fund 2018 (HURF-2018-67).

References

  1. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005;41:1313-21. https://doi.org/10.1002/hep.20701
  2. Brunt EM. Nonalcoholic fatty liver disease: what the pathologist can tell the clinician. Digest Dis 2012;30:61-8. https://doi.org/10.1159/000341127
  3. Morris G, Berk M, Walder K, Maes M. Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses. BMC Med 2015;13:28. https://doi.org/10.1186/s12916-014-0259-2
  4. Schuppan D, Schattenberg JM. Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol 2013;28:68-76. https://doi.org/10.1111/jgh.12212
  5. Brunt EM, Wong VW-S, Nobili V, Day CP, Sookoian S, Maher JJ, Bugianesi E, Sirlin CB, Neuschwander-Tetri BA, Rinella ME. Nonalcoholic fatty liver disease. Nat Rev Dis Primers 2015;1:15080. https://doi.org/10.1038/nrdp.2015.80
  6. Nassir F, Ibdah J. Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci 2014;15:8713-42. https://doi.org/10.3390/ijms15058713
  7. Adolph TE, Grander C, Moschen AR, Tilg HJT. Liver-microbiome axis in health and disease. Trends Immunol 2018;39:712-23. https://doi.org/10.1016/j.it.2018.05.002
  8. Stanislawski MA, Lozupone CA, Wagner BD, Eggesbo M, Sontag MK, Nusbacher NM, Martinez M, Dabelea DJ. Gut microbiota in adolescents and the association with fatty liver: the EPOCH study. Pediatr Res 2018.
  9. Jiang C, Xie C, Li F, Zhang L, Nichols RG, Krausz KW, Cai J, Qi Y, Fang Z-Z, Takahashi SJT. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 2015;125:386-402. https://doi.org/10.1172/JCI76738
  10. Kolodziejczyk AA, Zheng D, Shibolet O, Elinav EJ. The role of the microbiome in NAFLD and NASH. EMBO Mol Med 2019;11.
  11. Sharpton SR, Ajmera V, Loomba RJCG. Emerging role of the gut microbiome in nonalcoholic fatty liver disease: from composition to function. Clin Gastroenterol Hepatol 2019;17:296-306. https://doi.org/10.1016/j.cgh.2018.08.065
  12. Heo SB, Lim SW, Jhun JY, La Cho M, Chung BH, Yang CW. Immunological benefits by ginseng through reciprocal regulation of Th17 and Treg cells during cyclosporine-induced immunosuppression. J Ginseng Res 2016;40:18-27. https://doi.org/10.1016/j.jgr.2015.04.005
  13. Hong SH, Suk KT, Choi SH, Lee JW, Sung HT, Kim CH, Kim EJ, Kim MJ, Han SH, Kim MY. Anti-oxidant and natural killer cell activity of Korean red ginseng (Panax ginseng) and urushiol (Rhus vernicifera Stokes) on non-alcoholic fatty liver disease of rat. Food Chem Toxicol 2013;55:586-91. https://doi.org/10.1016/j.fct.2013.01.022
  14. Shen L, Xiong Y, Wang DQ, Howles P, Basford JE, Wang J, Xiong YQ, Hui DY, Woods SC, Liu M. Ginsenoside Rb1 reduces fatty liver by activating AMP-activated protein kinase in obese rats. J Lipid Res 2013;54:1430-8. https://doi.org/10.1194/jlr.M035907
  15. Bang CS, Hong SH, Suk KT, Kim JB, Han SH, Sung H, Kim EJ, Kim MJ, Kim MY, Baik SK. Effects of Korean Red Ginseng (Panax ginseng), urushiol (Rhus vernicifera Stokes), and probiotics (Lactobacillus rhamnosus R0011 and Lactobacillus acidophilus R0052) on the gut-liver axis of alcoholic liver disease. J Ginseng Res 2014;38:167-72. https://doi.org/10.1016/j.jgr.2014.04.002
  16. Jeong H, Kim J-W, Yang M-S, Park C, Kim JH, Lim CW, Kim BJT. Beneficial effects of Korean red ginseng in the progression of non-alcoholic steatohepatitis via FABP4 modulation. Am J Chinese Med 2018;46:1581-607. https://doi.org/10.1142/S0192415X18500817
  17. Hong M, Lee YH, Kim S, Suk KT, Bang CS, Yoon JH, Baik GH, Kim DJ, Kim MJJ. Anti-inflammatory and antifatigue effect of Korean Red Ginseng in patients with nonalcoholic fatty liver disease. J Ginseng Res 2016;40:203-10. https://doi.org/10.1016/j.jgr.2015.07.006
  18. Korean Association for the Study of the L. KASL clinical practice guidelines: management of nonalcoholic fatty liver disease. Clin Mol Hepatol 2013;19:325-48. https://doi.org/10.3350/cmh.2013.19.4.325
  19. George ES, Forsyth A, Itsiopoulos C, Nicoll AJ, Ryan M, Sood S, Roberts SK, Tierney ACJ. Practical dietary recommendations for the prevention and management of nonalcoholic fatty liver disease in adults. Adv Nutr 2018;9:30-40. https://doi.org/10.1093/advances/nmx007
  20. Kargulewicz A, Stankowiak-Kulpa H, Grzymislawski MJ. Dietary recommendations for patients with nonalcoholic fatty liver disease. Prz Gastroenterol 2014;9:18.
  21. Jeong TC, Kim HJ, Park JI, Ha CS, Park JD, Kim SI, Roh JK. Protective effects of red ginseng saponins against carbon tetrachloride-induced hepatotoxicity in Sprague Dawley rats. Planta Med 1997;63:136-40. https://doi.org/10.1055/s-2006-957630
  22. Mehta M, Duseja A, Mitra S, Das A, Taneja S, Dhiman R, Chawla YJ. Cytokeratin-18 (CK-18) is A useful biomarker in differentiating between NASH and No-NASH amongst patients with nonalcoholic fatty liver disease (NAFLD). J Clin Exp Hepatol 2017;7:S44.
  23. Tsutsui M, Tanaka N, Kawakubo M, Sheena Y, Horiuchi A, Komatsu M, Nagaya T, Joshita S, Umemura T, T Ichijo. Serum fragmented cytokeratin 18 levels reflect the histologic activity score of nonalcoholic fatty liver disease more accurately than serum alanine aminotransferase levels. J Clin Gastroenter 2010;44:440-7. https://doi.org/10.1097/MCG.0b013e3181bdefe2
  24. Papatheodoridis GV, Hadziyannis E, Tsochatzis E, Georgiou A, Kafiri G, Tiniakos DG, Margariti K, Manolakopoulos S, Manesis EK, Archimandritis AJJ. Serum apoptotic caspase activity in chronic hepatitis C and nonalcoholic Fatty liver disease. J Clin Gastroenter 2010;44:e87-95. https://doi.org/10.1097/MCG.0b013e3181c0945a
  25. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBio-Cloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613. https://doi.org/10.1099/ijsem.0.001755
  26. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75:7537-41. https://doi.org/10.1128/AEM.01541-09
  27. Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion M-J, Berger B, Krause L. Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics 2016;33:782-3. https://doi.org/10.1093/bioinformatics/btw725
  28. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower CJ. Metagenomic biomarker discovery and explanation. Genome Biol 2011;12:R60. https://doi.org/10.1186/gb-2011-12-6-r60
  29. Murthy HN, Dandin VS, Paek KY. Hepatoprotective activity of ginsenosides from Panax ginseng adventitious roots against carbon tetrachloride treated hepatic injury in rats. J Ethnopharmacol 2014;158:442-6. https://doi.org/10.1016/j.jep.2014.10.047
  30. Seo S-J, Cho JY, Jeong YH, Choi Y-S. Effect of Korean red ginseng extract on liver damage induced by short-term and long-term ethanol treatment in rats. J Ginseng Res 2013;37:194. https://doi.org/10.5142/jgr.2013.37.194
  31. Gui QF, Xu ZR, Xu KY, Yang YM. The efficacy of ginseng-related therapies in type 2 diabetes mellitus: an updated systematic review and meta-analysis. Medicine (Baltimore) 2016;95:e2584. https://doi.org/10.1097/MD.0000000000002584
  32. Kim H-G, Cho J-H, Yoo S-R, Lee J-S, Han J-M, Lee N-H, Ahn Y-C, Son C-G. Antifatigue effects of Panax ginseng CA Meyer: a randomised, double-blind, placebo-controlled trial. PloS One 2013;8:e61271. https://doi.org/10.1371/journal.pone.0061271
  33. Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DA, Rogers MA. New consensus nomenclature for mammalian keratins. J Cell Biol 2006;174:169-74. https://doi.org/10.1083/jcb.200603161
  34. Pei R-J, Danbara N, Tsujita-Kyutoku M, Yuri T, Tsubura A. Immunohistochemical profiles of Mallory body by a panel of anti-cytokeratin antibodies. Med Electron Microsc 2004;37:114-8.
  35. Jang HR, Park HJ, Kang D, Chung H, Nam MH, Lee Y, Park JH, Lee HY. A protective mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption. Exp Mol Med 2019;51:1-14.
  36. Hu J, Ma L, Nie Y, Chen J, Zheng W, Wang X, Xie C, Zheng Z, Wang Z, Yang T, et al. A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets. Cell Host Microbe 2018;24:817-832 e8. https://doi.org/10.1016/j.chom.2018.11.006
  37. Helenius TO, Antman CA, Asghar MN, Nystrom JH, Toivola DM. Keratins are altered in intestinal disease-related stress responses. Cells 2016;5.
  38. Cho YJ, Son HJ, Kim KS. A 14-week randomized, placebo-controlled, double-blind clinical trial to evaluate the efficacy and safety of ginseng polysaccharide (Y-75). J Transl Med 2014;12:283. https://doi.org/10.1186/s12967-014-0283-1
  39. Yeo CR, Yang C, Wong TY, Popovich DG. A quantified ginseng (Panax ginseng C.A. Meyer) extract influences lipid acquisition and increases adiponectin expression in 3T3-L1 cells. Molecules 2011;16:477-92. https://doi.org/10.3390/molecules16010477
  40. Janssen AW, Houben T, Katiraei S, Dijk W, Boutens L, Van Der Bolt N, Wang Z, Brown JM, Hazen SL, Mandard S. Modulation of the gut microbiota impacts nonalcoholic fatty liver disease: a potential role for bile acids. J Lipid Res 2017;58:1399-416. https://doi.org/10.1194/jlr.M075713
  41. Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE, McGilvray ID, Allard JP. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013;58:120-7. https://doi.org/10.1002/hep.26319
  42. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto J-M, Kennedy S. Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500:541. https://doi.org/10.1038/nature12506
  43. Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, Seed PC, Rawls JF, David LA. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016;63:764-75. https://doi.org/10.1002/hep.28356
  44. Mao J, Qi S, Cui Y, Dou X, Luo XM, Liu J, Zhu T, Ma Y, Wang H. Lactobacillus rhamnosus GG attenuates lipopolysaccharide-induced inflammation and barrier dysfunction by regulating MAPK/NF-kappaB signaling and modulating metabolome in the piglet intestine. J Nutr 2020.
  45. Chen CC, Lai CC, Huang HL, Su YT, Chiu YH, Toh HS, Chiang SR, Chuang YC, Lu YC, Tang HJ. Antimicrobial ability and mechanism analysis of Lactobacillus species against carbapenemase-producing Enterobacteriaceae. J Microbiol Immunol Infect 2020.
  46. Ren Q, Yang B, Zhu G, Wang S, Fu C, Zhang H, Ross RP, Stanton C, Chen H, Chen W. Antiproliferation Activity and Mechanism of c9, t11, c15-CLNA and t9, t11, c15-CLNA from Lactobacillus plantarum ZS2058 on Colon Cancer Cells. Molecules 2020;25.
  47. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002;346:1221-31. https://doi.org/10.1056/NEJMra011775

Cited by

  1. The Impact of Gut Microbiome on the Pharmacokinetics of Ginsenosides Rd and Rg3 in Mice after Oral Administration of Red Ginseng vol.49, pp.8, 2021, https://doi.org/10.1142/s0192415x21500890
  2. Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial vol.12, pp.2, 2021, https://doi.org/10.1007/s13167-021-00243-4