DOI QR코드

DOI QR Code

Improvement of antithrombotic activity of red ginseng extract by nanoencapsulation using chitosan and antithrombotic cross-linkers: polyglutamic acid and fucoidan

  • Kim, Eun Suh (Department of Food and Nutrition, Hanyang University) ;
  • Lee, Ji-Soo (Department of Food and Nutrition, Hanyang University) ;
  • Lee, Hyeon Gyu (Department of Food and Nutrition, Hanyang University)
  • Received : 2019.08.24
  • Accepted : 2020.04.03
  • Published : 2021.03.01

Abstract

Background: Red ginseng (RG) extract, especially ginsenoside Rg1 and Rb1 fractions has been reported to have antithrombotic activities. However, gastric instability and low intestinal permeability are considered to be obstacles to its oral administration. We hypothesized that stability, permeability, and activities of RG might be improved by encapsulation within nanoparticles (NPs) prepared with antithrombotic coating materials. Methods: RG-loaded chitosan (CS) NPs (PF-NPs) were prepared by complex ionic gelation with the antithrombotic wall materials, polyglutamic acid (PGA), and fucoidan (Fu). The concentrations of PGA (mg/mL, X1) and Fu (mg/mL, X2) were optimized for the smallest particle size by response surface methodology. Antithrombotic activities of RG and PF-NPs were analyzed using ex vivo and in vivo antiplatelet activities, in vivo carrageenan-induced mouse tail, and arteriovenous shunt rat thrombosis models. Results: In accordance with a quadratic regression model, the smallest PF-NPs (286 ± 36.6 nm) were fabricated at 0.628 mg/mL PGA and 0.081 mg/mL Fu. The inhibitory activities of RG on ex vivo and in vivo platelet aggregation and thrombosis in in vivo arteriovenous shunt significantly (p < 0.05) increased to approximately 66.82%, 35.42%, and 38.95%, respectively, by encapsulation within PF-NPs. For an in vivo carrageenan-induced mouse tail thrombosis model, though RG had a weaker inhibitory effect, PF-NPs reduced thrombus significantly due to the presence of PGA and Fu. Conclusion: PF-NPs contributed to improve the activities of RG not only by nanoencapsulation but also by antithrombotic coating materials. Therefore, PG-NPs can be suggested as an efficient delivery system for oral administration of RG.

Keywords

Acknowledgement

This work was supported by the research fund of Hanyang University (HY-2017).

References

  1. Heo JH, Lee ST, Chu K, Oh M, Park HJ, Shim JY, Kim M. An open label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimer's disease. Eur J Neurol 2008;15(8):865-8. https://doi.org/10.1111/j.1468-1331.2008.02157.x
  2. Jeon BH, Kim CS, Park KS, Lee JW, Park JB, Kim K-J, Kim SH, Chang SJ, Nam KY. Effect of Korea red ginseng on the blood pressure in conscious hypertensive rats. Gen Pharmacol Vasc Syst 2000;35(3):135-41. https://doi.org/10.1016/S0306-3623(01)00096-9
  3. Vuksan V, Sung M-K, Sievenpiper JL, Stavro PM, Jenkins AL, Di Buono M, Lee KS, Leiter LA, Nam KY, Arnason JT, et al. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr Metab Cardiovas 2008;18(1):46-56. https://doi.org/10.1016/j.numecd.2006.04.003
  4. Furie B, Furie BC. Thrombus formation in vivo. J Clin Invest 2005;115(12):3355. https://doi.org/10.1172/JCI26987
  5. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med 2008;359(9):938-49. https://doi.org/10.1056/NEJMra0801082
  6. Lee CH, Kim J-H. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38(3):161-6. https://doi.org/10.1016/j.jgr.2014.03.001
  7. Jeon BR, Kim SJ, Hong SB, Park H-J, Cho JY, Rhee MH. The inhibitory mechanism of crude saponin fraction from Korean red ginseng in collagen-induced platelet aggregation. J Ginseng Res 2015;39(3):279-85. https://doi.org/10.1016/j.jgr.2015.02.001
  8. Kim J-H. Cardiovascular diseases and Panax ginseng. J Ginseng Res 2012;36(1):16-26. https://doi.org/10.5142/jgr.2012.36.1.16
  9. Kwon H-W, Shin J-H, Cho H-J, Rhee MH, Park H-J. Total saponin from Korean red ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser 157) and dephosphorylation of PI3K and Akt. J Ginseng Res 2016;40(1):76-85. https://doi.org/10.1016/j.jgr.2015.05.004
  10. Han M. Difference in oral absorption of ginsenoside Rg1 between in vitro and in vivo models. Acta Pharmacol Sin 2006;27(4):499-505. https://doi.org/10.1111/j.1745-7254.2006.00303.x
  11. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 2003;31(8):1065-71. https://doi.org/10.1124/dmd.31.8.1065
  12. Fang Z, Bhandari B. Encapsulation of polyphenols-a review. Trends Food Sci Technol 2010;21(10):510-23. https://doi.org/10.1016/j.tifs.2010.08.003
  13. Solis-Morales D, Saenz-Hernandez C, Ortega-Rivas E. Attrition reduction and quality improvement of coated puffed wheat by fluidised bed technology. J Food Eng 2009;93(2):236-41. https://doi.org/10.1016/j.jfoodeng.2009.01.020
  14. Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 1996;13(12):1838-45. https://doi.org/10.1023/A:1016085108889
  15. Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces 2012;90:21-7. https://doi.org/10.1016/j.colsurfb.2011.09.042
  16. Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 2012;4(11):3274-94. https://doi.org/10.1039/c2nr30260h
  17. Ichikawa S, Iwamoto S, Watanabe J. Formation of biocompatible nanoparticles by self-assembly of enzymatic hydrolysates of chitosan and carboxymethyl cellulose. Biosci Biotechnol Biochem 2005;69(9):1637-42. https://doi.org/10.1271/bbb.69.1637
  18. Chandramouli V, Kailasapathy K, Peiris P, Jones M. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 2004;56(1):27-35. https://doi.org/10.1016/j.mimet.2003.09.002
  19. Yoo SH, Song YB, Chang PS, Lee HG. Microencapsulation of alpha-tocopherol using sodium alginate and its controlled release properties. Int J Biol Macromol 2006;38(1):25-30. https://doi.org/10.1016/j.ijbiomac.2005.12.013
  20. Hajdu I, Bodnar M, Filipcsei G, Hartmann JF, Daroczi L, Zrinyi M, Borbely J. Nanoparticles prepared by self-assembly of chitosan and poly-γ-glutamic acid. Colloid Polym Sci 2008;286(3):343-50. https://doi.org/10.1007/s00396-007-1785-7
  21. Huang YC, Lam UI. Chitosan/fucoidan pH sensitive nanoparticles for oral delivery system. J Chin Chem Soc 2011;58(6):779-85. https://doi.org/10.1002/jccs.201190121
  22. Keresztessy Z, Bodnar M, Ber E, Hajdu I, Zhang M, Hartmann JF, Minko T, Borbely J. Self-assembling chitosan/poly-g-glutamic acid nanoparticles for targeted drug delivery. Colloid Polym Sci 2009;287(7):759-65. https://doi.org/10.1007/s00396-009-2022-3
  23. Hong S-P, Kim T-W, Park C, Poo H, Sung M-H. Anticoagulant and composition for preventing thrombus containing poly-gamma-glutamic acid. United States patent US 8618057B2. 2006 Dec 31.
  24. Zhu Z, Zhang Q, Chen L, Ren S, Xu P, Tang Y, Luo D. Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation. Thromb Res 2010;125(5):419-26. https://doi.org/10.1016/j.thromres.2010.02.011
  25. Silva E, Rogez H, Larondelle Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep Purif Technol 2007;55(3):381-7. https://doi.org/10.1016/j.seppur.2007.01.008
  26. Yoo S-H, Song Y-B, Chang P-S, Lee HG. Microencapsulation of a-tocopherol using sodium alginate and its controlled release properties. Int J Biol Macromol 2006;38(1):25-30. https://doi.org/10.1016/j.ijbiomac.2005.12.013
  27. Kim ES, Lee J-S, Lee HG. Nanoencapsulation of red ginseng extracts using chitosan with polyglutamic acid or fucoidan for improving antithrombotic activities. J Agric Food Chem 2016;64(23):4765-71. https://doi.org/10.1021/acs.jafc.6b00911
  28. Davidov-Pardo G, Joye IJ, McClements DJ. Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 1: preparation and characterization. Food Hydrocoll 2015;45:309-16. https://doi.org/10.1016/j.foodhyd.2014.11.023
  29. Kim MK, Lee J-S, Kim KY, Lee HG. Ascorbyl palmitate-loaded chitosan nanoparticles: characteristic and polyphenol oxidase inhibitory activity. Colloids Surf B Biointerfaces 2013;103:391-4. https://doi.org/10.1016/j.colsurfb.2012.09.038
  30. Yang J, Chen J, Pan D, Wan Y, Wang Z. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr Polym 2013;92(1):719-25. https://doi.org/10.1016/j.carbpol.2012.09.036
  31. Jin Y-R, Yu JY, Lee J-J, You S-H, Chung J-H, Noh J-Y, Im J-H, Han X-H, Kim T-J, Shin K-S, et al. Antithrombotic and antiplatelet activities of Korean red ginseng extract. Basic Clin Pharmacol Toxicol 2007;100(3):170-5. https://doi.org/10.1111/j.1742-7843.2006.00033.x
  32. Simkhada JR, Cho SS, Mander P, Choi YH, Yoo JC. Purification, biochemical properties and antithrombotic effect of a novel Streptomyces enzyme on carrageenan-induced mice tail thrombosis model. Thromb Res 2012;129(2):176-82. https://doi.org/10.1016/j.thromres.2011.09.014
  33. Jin WY, Kim S-H, Kim HK, Jang DG, Nam JB, Kang YM, Hwang BY, Kim D-S. Antiplatelet and antithrombotic effect of Phyllostachys pubescens leaves and Mume Fructus combination. Integr Med Res 2013;2(2):70-5. https://doi.org/10.1016/j.imr.2013.04.005
  34. Harne S, Sharma A, Dhaygude M, Joglekar S, Kodam K, Hudlikar M. Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf B Biointerfaces 2012;95:284-8. https://doi.org/10.1016/j.colsurfb.2012.03.005
  35. Avadi MR, Sadeghi AMM, Mohammadpour N, Abedin S, Atyabi F, Dinarvand R, Rafiee-Tehrani M. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine 2010;6(1):58-63. https://doi.org/10.1016/j.nano.2009.04.007
  36. Mohanraj V, Chen Y. Nanoparticles-a review. Trop J Pharm Res 2007;5(1):561-73.
  37. Dai W-G, Dong LC, Song Y-Q. Nanosizing of a drug/carrageenan complex to increase solubility and dissolution rate. Int J Pharm 2007;342(1):201-7. https://doi.org/10.1016/j.ijpharm.2007.04.032
  38. Gordon S, Teichmann E, Young K, Finnie K, Rades T, Hook S. In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur J Pharm Sci 2010;41(2):360-8. https://doi.org/10.1016/j.ejps.2010.07.004
  39. Xu R. Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology 2008;6(2):112-5. https://doi.org/10.1016/j.partic.2007.12.002
  40. Lahtinen M, Holtta P, Riekkola M, Yohannes G. Analysis of colloids released from bentonite and crushed rock. Phys Chem Earth 2010;35(6):265-70. https://doi.org/10.1016/j.pce.2010.04.004
  41. Li L, Sillanpaa M, Tuominen M, Lounatmaa K, Schultz E. Behavior of titanium dioxide nanoparticles in Lemna minor growth test conditions. Ecotoxicol Environ Saf 2013;88:89-94. https://doi.org/10.1016/j.ecoenv.2012.10.024
  42. Hermawan AA, Bing TK, Salamatinia B. Application and optimization of using recycled pulp for methylene blue removal from wastewater: a response surface methodology approach. Int J Environ Sci Te 2015;6(4):267.
  43. de Clerck F, David J-L, Janssen PA. Inhibition of 5-hydroxytryptamine-induced and-amplified human platelet aggregation by ketanserin (R 41 468), a selective 5-HT2-receptor antagonist. Agents Actions 1994;43(3e4):225-34. https://doi.org/10.1007/BF01986694
  44. Yu JY, Jin Y-R, Lee J-J, Chung J-H, Noh J-Y, You S-H, Kim N-I, Im J-H, Lee J-H, Seo J-M, et al. Antiplatelet and antithrombotic activities of Korean red ginseng. Arch Pharm Res 2006;29(10):898-903. https://doi.org/10.1007/BF02973912
  45. Jiao Y, Ubrich N, Marchand-Arvier M, Vigneron C, Hoffman M, Lecompte T, Maincent P. In vitro and in vivo evaluation of oral heparin-loaded polymeric nanoparticles in rabbits. Circulation 2002;105(2):230-5. https://doi.org/10.1161/hc0202.101988
  46. Luan X, Skupin M, Siepmann J, Bodmeier R. Key parameters affecting the initial release (burst) and encapsulation efficiency of peptide-containing poly (lactide-co-glycolide) microparticles. Int J Pharm 2006;324(2):168-75. https://doi.org/10.1016/j.ijpharm.2006.06.004
  47. Arslan R, Bektas N, Bor Z, Sener E. Evaluation of the antithrombotic effects of Crataegus monogyna and Crataegus davisii in the carrageenan-induced tail thrombosis model. Pharm Biol 2014;53(2):275-9. https://doi.org/10.3109/13880209.2014.914957
  48. Arslan R, Bor Z, Bektas N, Mericli AH, Ozturk Y. Antithrombotic effects of ethanol extract of Crataegus orientalis in the carrageenan-induced mice tail thrombosis model. Thromb Res 2011;127(3):210-3. https://doi.org/10.1016/j.thromres.2010.11.028
  49. Chen M-C, Wong H-S, Lin K-J, Chen H-L, Wey S-P, Sonaje K, Lin Y-H, Chu C-Y, Sung H-W. The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin. Biomaterials 2009;30(34):6629-37. https://doi.org/10.1016/j.biomaterials.2009.08.030
  50. Fiorucci S, Santucci L, Gresele P, Faccino RM, del Soldato P, Morelli A. Gastrointestinal safety of NO-aspirin (NCX-4016) in healthy human volunteers: a proof of concept endoscopic study. Gastroenterology 2003;124(3):600-7. https://doi.org/10.1053/gast.2003.50096
  51. Wong PC, Quan ML, Earl J, Watson CA, Wexler RR, Knabb RM. Nonpeptide factor Xa inhibitors: I. studies with SF303 and SK549, a new class of potent antithrombotics. J Pharmacol Exp Ther 2000;292(1):351-7.
  52. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MaJ. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 2001;73(2):255-67. https://doi.org/10.1016/S0168-3659(01)00294-2
  53. Zhou T, Zu G, Zhang X, Wang X, Li S, Gong X, Liang Z, Zhao J. Neuroprotective effects of ginsenoside Rg1 through the Wnt/β-catenin signaling pathway in both in vivo and in vitro models of Parkinson's disease. Neuropharmacology 2015.