DOI QR코드

DOI QR Code

Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-κB/miRNA-155-5p/eNOS pathway

  • Kim, Tae-Hoon (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University) ;
  • Kim, Ji-Yoon (Department of Anesthesiology and Pain Medicine, Hanyang University Hospital) ;
  • Bae, Jieun (Department of Anesthesiology and Pain Medicine, Hanyang University Hospital) ;
  • Kim, Young-Mi (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University) ;
  • Won, Moo-Ho (Department of Neurobiology, School of Medicine, Kangwon National University) ;
  • Ha, Kwon-Soo (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University) ;
  • Kwon, Young-Guen (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Kim, Young-Myeong (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University)
  • Received : 2020.01.15
  • Accepted : 2020.08.10
  • Published : 2021.03.01

Abstract

Background: Korean Red ginseng extract (KRGE) has beneficial effects on the cardiovascular system by improving endothelial cell function. However, its pharmacological effect on endothelial cell senescence has not been clearly elucidated. Therefore, we examined the effect and molecular mechanism of KRGE on the senescence of human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were grown in normal or KRGE-supplemented medium. Furthermore, they were transfected with heme oxygenase-1 (HO-1) gene or treated with its inhibitor, a NF-κB inhibitor, and a miR-155-5p mimic or inhibitor. Senescence-associated characteristics of endothelial cells were determined by biochemical and immunohistochemical analyses. Results: Treatment of HUVECs with KRGE resulted in delayed onset and progression of senescence-associated characteristics, such as increased lysosomal acidic β-galactosidase and decreased telomerase activity, angiogenic dysfunction, and abnormal cell morphology. KRGE preserved the levels of anti-senescent factors, such as eNOS-derived NO, MnSOD, and cyclins D and A: however, it decreased the levels of senescence-promoting factors, such as ROS, activated NF-κB, endothelial cell inflammation, and p21 expression. The beneficial effects of KRGE were due to the induction of HO-1 and the inhibition of NF-κB-dependent biogenesis of miR-155-5p that led to the downregulation of eNOS. Moreover, treatment with inhibitors of HO-1, NF-κB, and miR-155-5p abolished the anti-senescence effects of KRGE. Conclusion: KRGE delayed or prevented HUVEC senescence through a signaling cascade involving the induction of HO-1, the inhibition of NF-κB-dependent miR-155-5p biogenesis, and the maintenance of the eNOS/NO axis activity, suggesting that it may protect against vascular diseases associated with endothelial senescence.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT and Future Planning (MSIP; NRF-2017R1A2B3004565).

References

  1. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998;91:3527-61.
  2. Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 1999;84:253-6. https://doi.org/10.1161/01.RES.84.3.253
  3. Hayashi T, Matsui-Hirai H, Miyazaki-Akita A, Fukatsu A, Funami J, Ding QF, Kamalanathan S, Hattori Y, Ignarro LJ, Iguchi A. Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes. Proc Natl Acad Sci USA 2006;103:17018-23. https://doi.org/10.1073/pnas.0607873103
  4. Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;42:264-9. https://doi.org/10.1016/j.jgr.2017.10.004
  5. Kim J, Lee KS, Kim JH, Lee DK, Park M, Choi S, Park W, Kim S, Choi YK, Hwang JY, et al. Aspirin prevents TNF-α-induced endothelial cell dysfunction by regulating the NF-κB-dependent miR-155/eNOS pathway: role of a miR-155/eNOS axis in preeclampsia. Free Radic Biol Med 2017;104:185-98. https://doi.org/10.1016/j.freeradbiomed.2017.01.010
  6. Kim S, Lee KS, Choi S, Kim J, Lee DK, Park M, Park W, Kim TH, Hwang JY, Won MH, et al. NF-κB-responsive miRNA-31-5p elicits endothelial dysfunction associated with preeclampsia via down-regulation of endothelial nitric-oxide synthase. J Biol Chem 2018;293:18989-9000. https://doi.org/10.1074/jbc.RA118.005197
  7. Yang H, Lee SE, Jeong SI, Park CS, Jin YH, Park YS. Up-regulation of heme oxygenase-1 by Korean red ginseng water extract as a cytoprotective effect in human endothelial cells. J Ginseng Res 2011;35:352-9. https://doi.org/10.5142/jgr.2011.35.3.352
  8. Choi S, Kim J, Kim JH, Lee DK, Park W, Park M, Kim S, Hwang JY, Won MH, Choi YK, et al. Carbon monoxide prevents TNF-α-induced eNOS down-regulation by inhibiting NF-κB-responsive miR-155-5p biogenesis. Exp Mol Med 2017;49:-403.
  9. Luo W, Wang Y, Yang H, Dai C, Hong H, Li J, Liu Z, Guo Z, Chen X, He P, et al. Heme oxygenase-1 ameliorates oxidative stress-induced endothelial senescence via regulating endothelial nitric oxide synthase activation and coupling. Aging (Albany NY) 2018;10:1722-44. https://doi.org/10.18632/aging.101506
  10. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33. https://doi.org/10.1016/j.cell.2009.01.002
  11. Schober A, Weber C. Mechanisms of MicroRNAs in atherosclerosis. Annu Rev Pathol 2016;11:583-616. https://doi.org/10.1146/annurev-pathol-012615-044135
  12. Liu DH, Chen YM, Liu Y, Hao BS, Zhou B, Wu L, Wang M, Chen L, Wu WK, Qian XX. Ginsenoside Rb1 reverses H2O2-induced senescence in human umbilical endothelial cells: involvement of eNOS pathway. J Cardiovasc Pharmacol 2012;59:222-30. https://doi.org/10.1097/FJC.0b013e31823c1d34
  13. Song Z, Liu Y, Hao B, Yu S, Zhang H, Liu D, Zhou B, Wu L, Wang M, Xiong Z, et al. Ginsenoside Rb1 prevents H2O2-induced HUVEC senescence by stimulating sirtuin-1 pathway. PLoS One 2014;9:e112699. https://doi.org/10.1371/journal.pone.0112699
  14. Min JK, Kim JH, Cho YL, Maeng YS, Lee SJ, Pyun BJ, Kim YM, Park JH, Kwon YG. 20(S)-Ginsenoside Rg3 prevents endothelial cell apoptosis via inhibition of a mitochondrial caspase pathway. Biochem Biophys Res Commun 2006;349:987-94. https://doi.org/10.1016/j.bbrc.2006.08.129
  15. Cho YL, Hur SM, Kim JY, Kim JH, Lee DK, Choe J, Won MH, Ha KS, Jeoung D, Han S, et al. Specific activation of insulin-like growth factor-1 receptor by ginsenoside Rg5 promotes angiogenesis and vasorelaxation. J Biol Chem 2015;290:467-77. https://doi.org/10.1074/jbc.M114.603142
  16. Kim EJ, Kwon KA, Lee YE, Kim JH, Kim SH, Kim JH. Korean Red Ginseng extract reduces hypoxia-induced epithelial-mesenchymal transition by repressing NF-κB and ERK1/2 pathways in colon cancer. J Ginseng Res 2018;42:288-97. https://doi.org/10.1016/j.jgr.2017.03.008
  17. Sung WN, Kwok HH, Rhee MH, Yue PY, Wong RN. Korean Red Ginseng extract induces angiogenesis through activation of glucocorticoid receptor. J Ginseng Res 2017;41:477-86. https://doi.org/10.1016/j.jgr.2016.08.011
  18. Kim YM, Kim JH, Kwon HM, Lee DH, Won MH, Kwon YG, Kim YM. Korean Red Ginseng protects endothelial cells from serum-deprived apoptosis by regulating Bcl-2 family protein dynamics and caspase S-nitrosylation. J Ginseng Res 2013;37:413-24. https://doi.org/10.5142/jgr.2013.37.413
  19. Kim WS, Lee KS, Kim JH, Kim CK, Lee G, Choe J, Won MH, Kim TH, Jeoung D, Lee H, et al. The caspase-8/Bid/cytochrome c axis links signals from death receptors to mitochondrial reactive oxygen species production. Free Radic Biol Med 2017;112:567-77. https://doi.org/10.1016/j.freeradbiomed.2017.09.001
  20. Park M, Choi S, Kim S, Kim J, Lee DK, Park W, Kim T, Jung J, Hwang JY, Won MH, et al. NF-κB-responsive miR-155 induces functional impairment of vascular smooth muscle cells by downregulating soluble guanylyl cyclase. Exp Mol Med 2019;51:17. https://doi.org/10.1038/s12276-019-0212-8
  21. Kim KM, Chun SB, Koo MS, Choi WJ, Kim TW, Kwon YG, Chung HT, Billiar TR, Kim YM. Differential regulation of NO availability from macrophages and endothelial cells by the garlic component S-allyl cysteine. Free Radic Biol Med 2001;30:747-56. https://doi.org/10.1016/S0891-5849(01)00460-9
  22. Kim YM, Namkoong S, Yun YG, Hong HD, Lee YC, Ha KS, Lee H, Kwon HJ, Kwon YG, Kim YM. Water extract of Korean red ginseng stimulates angiogenesis by activating the PI3K/Akt-dependent ERK1/2 and eNOS pathways in human umbilical vein endothelial cells. Biol Pharm Bull 2007;30:1674-9. https://doi.org/10.1248/bpb.30.1674
  23. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev 2010;24:2463-79. https://doi.org/10.1101/gad.1971610
  24. Chen TY, Syu JS, Lin TC, Cheng HL, Lu FL, Wang CY. Chloroquine alleviates etoposide-induced centrosome amplification by inhibiting CDK2 in adrenocortical tumor cells. Oncogenesis 2015;4:e180. https://doi.org/10.1038/oncsis.2015.37
  25. Coleman PR, Hahn CN, Grimshaw M, Lu Y, Li X, Brautigan PJ, Beck K, Stocker R, Vadas MA, Gamble JR. Stress-induced premature senescence mediated by a novel gene, SENEX, results in an anti-inflammatory phenotype in endothelial cells. Blood 2010;116:4016-24. https://doi.org/10.1182/blood.v116.21.4016.4016
  26. Ungvari Z, Tarantini S, Kiss T, Wren JD, Giles CB, Griffin CT, Murfee WL, Pacher P, Csiszar A. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol 2018;15:555-65. https://doi.org/10.1038/s41569-018-0030-z
  27. Salminen A, Kauppinen A, Kaarniranta K. Emerging role of NF-κB signaling in the ninduction of senescence-associated secretory phenotype (SASP). Cell Signal 2012;24:835-45. https://doi.org/10.1016/j.cellsig.2011.12.006
  28. Chen Y, Liu K, Shi Y, Shao C. The tango of ROS and p53 in tissue stem cells. Cell Death Differ 2018;25:637-9. https://doi.org/10.1038/s41418-018-0062-2
  29. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302. https://doi.org/10.2174/157016109788340767
  30. Nam KY. The comparative understanding between red ginseng and white ginsengs, processed ginseng (Panax ginseng C.A. Meyer). J Ginseng Res 2005;29:1-18. https://doi.org/10.5142/JGR.2005.29.1.001
  31. Saw CL, Yang AY, Cheng DC, Boyanapalli SS, Su ZY, Khor TO, Gao S, Wang J, Jiang ZH, Kong AN. Pharmacodynamics of ginsenosides: antioxidant activities, activation of Nrf2, and potential synergistic effects of combinations. Chem Res Toxicol 2012;25:1574-80. https://doi.org/10.1021/tx2005025
  32. Higashi Y, Kihara Y, Noma K. Endothelial dysfunction and hypertension in aging. Hypertens Res 2012;35:1039-47. https://doi.org/10.1038/hr.2012.138
  33. Jin Y, Kim YJ, Jeon JN, Wang C, Min JW, Noh HY, Yang DC. Effect of white, red and black ginseng on physicochemical properties and ginsenosides. Plant Foods for Human Nutrition 2015;70:141-5. https://doi.org/10.1007/s11130-015-0470-0
  34. Jang IS, Jo E, Park SJ, Baek SJ, Hwang IH, Kang HM, Lee JH, Kwon J, Son J, Kwon HJ, et al. Proteomic analyses reveal that ginsenoside Rg3(S) partially reverses cellular senescence in human dermal fibroblasts by inducing peroxiredoxin. J Ginseng Res 2020;44:50-7. https://doi.org/10.1016/j.jgr.2018.07.008
  35. Pascal T, Debacq-Chainiaux F, Chretien A, Bastin C, Dabee AF, Bertholet V, Remacle J, Toussaint O. Comparison of replicative senescence and stress-induced premature senescence combining differential display and low-density DNA arrays. FEBS Lett 2005;579:3651-9. https://doi.org/10.1016/j.febslet.2005.05.056
  36. Haendeler J, Hoffmann J, Diehl JF, Vasa M, Spyridopoulos I, Zeiher AM, Dimmeler S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ Res 2004;94:768-75. https://doi.org/10.1161/01.RES.0000121104.05977.F3
  37. Choi JH, Jang M, Nah SY, Oh S, Cho IH. Multitarget effects of Korean Red Ginseng in animal model of Parkinson's disease: antiapoptosis, antioxidant, antiinflammation, and maintenance of blood-brain barrier integrity. J Ginseng Res 2018;42:379-88. https://doi.org/10.1016/j.jgr.2018.01.002
  38. Kang TH, Park HM, Kim YB, Kim H, Kim N, Do JH, Kang C, Cho Y, Kim SY. Effects of red ginseng extract on UVB irradiation-induced skin aging in hairless mice. J Ethnopharmacol 2009;123:446-51. https://doi.org/10.1016/j.jep.2009.03.022
  39. Bernard D, Gosselin K, Monte D, Vercamer C, Bouali F, Pourtier A, Vandenbunder B, Abbadie C. Involvement of Rel/nuclear factor-𝜅B transcription factors in keratinocyte senescence. Cancer Res 2004;64:472-81. https://doi.org/10.1158/0008-5472.CAN-03-0005
  40. Tilstra JS, Robinson AR, Wang J, Gregg SQ, Clauson CL, Reay DP, Nasto LA, St Croix CM, Usas A, Vo N, et al. NF-κB inhibition delays DNA damage-induced senescence and aging in mice. J Clin Invest 2012;122:2601-12. https://doi.org/10.1172/JCI45785
  41. Kriete A, Mayo KL, Yalamanchili N, Beggs W, Bender P, Kari C, Rodeck U. Cell autonomous expression of inflammatory genes in biologically aged fibroblasts associated with elevated NF-κB activity. Immun Ageing 2008;5:5. https://doi.org/10.1186/1742-4933-5-5
  42. Korhonen P, Helenius M, Salminen A. Age-related changes in the regulation of transcription factor NF-κB in rat brain. Neurosci Lett 1997;225:61-4. https://doi.org/10.1016/S0304-3940(97)00190-0
  43. Liu L, Vollmer MK, Ahmad AS, Fernandez VM, Kim H, Dore S. Pretreatment with Korean red ginseng or dimethyl fumarate attenuates reactive gliosis and confers sustained neuroprotection against cerebral hypoxic-ischemic damage by an Nrf2-dependent mechanism. Free Radic Biol Med 2019;131:98-114. https://doi.org/10.1016/j.freeradbiomed.2018.11.017
  44. Matsushita H, Chang E, Glassford AJ, Cooke JP, Chiu CP, Tsao PS. eNOS activity is reduced in senescent human endothelial cells: preservation by hTERT immortalization. Circ Res 2001;89:793-8. https://doi.org/10.1161/hh2101.098443
  45. Yang Y, Yang L, Liang X, Zhu G. MicroRNA-155 promotes atherosclerosis inflammation via targeting SOCS1. Cell Physiol Biochem 2015;36:1371-81. https://doi.org/10.1159/000430303
  46. Gao P, Shen F, Gabriel RA, Law D, Yang EY, Yang GY, Young WL, Su H. Attenuation of brain response to vascular endothelial growth factor-mediated angiogenesis and neurogenesis in aged mice. Stroke 2009;40. 3596-2600. https://doi.org/10.1161/STROKEAHA.109.561050
  47. Balasubramaniam V, Maxey AM, Morgan DB, Markham NE, Abman SH. Inhaled NO restores lung structure in eNOS-deficient mice recovering from neonatal hypoxia. Am J Physiol Lung Cell Mol Physiol 2006;291:L119-27. https://doi.org/10.1152/ajplung.00395.2005
  48. Qian HS, de Resende MM, Beausejour C, Huw LY, Liu P, Rubanyi GM, Kauser K. Age-dependent acceleration of ischemic injury in endothelial nitric oxide synthase-deficient mice: potential role of impaired VEGF receptor 2 expression. J Cardiovasc Pharmacol 2006;47:587-93. https://doi.org/10.1097/01.fjc.0000211736.55583.5c
  49. Katsuumi G, Shimizu I, Yoshida Y, Minamino T. Vascular senescence in cardiovascular and metabolic diseases. Front Cardiovasc Med 2018;5:18.