DOI QR코드

DOI QR Code

Efficient Constitutive Expression of Cellulolytic Enzymes in Penicillium oxalicum for Improved Efficiency of Lignocellulose Degradation

  • Waghmare, Pankajkumar Ramdas (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Waghmare, Pratima Pankajkumar (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Gao, Liwei (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Sun, Wan (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Qin, Yuqi (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Liu, Guodong (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Qu, Yinbo (State Key Laboratory of Microbial Technology, Shandong University)
  • Received : 2021.01.04
  • Accepted : 2021.03.10
  • Published : 2021.05.28

Abstract

Efficient cellulolytic enzyme production is important for the development of lignocellulose-degrading enzyme mixtures. However, purification of cellulases from their native hosts is time- and labor-consuming. In this study, a constitutive expression system was developed in Penicillium oxalicum for the secreted production of proteins. Using a constitutive polyubiquitin gene promoter and cultivating with glucose as the sole carbon source, nine cellulolytic enzymes of different origins with relatively high purity were produced within 48 h. When supplemented to a commercial cellulase preparation, cellobiohydrolase I from P. funiculosum and cellobiohydrolase II from Talaromyces verruculosus showed remarkable enhancing effects on the hydrolysis of steam-exploded corn stover. Additionally, a synergistic effect was observed for these two cellobiohydrolases during the hydrolysis. Taken together, the constitutive expression system provides a convenient tool for the production of cellulolytic enzymes, which is expected to be useful in the development of highly efficient lignocellulose-degrading enzyme mixtures.

Keywords

Acknowledgement

This work was supported by National Key R&D Program of China Grant (2018YFA0900500), Major Basic Research Program of Shandong Provincial Natural Science Foundation (ZR2019ZD19), the Key Research and Development Project of Shandong Province (2019JZZY020223 and 2019JZZY020807), the Young Scholars Program of Shandong University (YSPSDU) (to G. L.), and the China/Shandong University International Postdoctoral Exchange Program.

References

  1. Kumar A, Gautam A, Dutt D. 2016. Biotechnological transformation of lignocellulosic biomass in to industrial products: an overview. Adv. Biosci. Biotechnol. 07: 149-168. https://doi.org/10.4236/abb.2016.73014
  2. Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. 2015. Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnol. Adv. 33: 1091-1107. https://doi.org/10.1016/j.biotechadv.2014.12.002
  3. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804-807. https://doi.org/10.1126/science.1137016
  4. Balan V. 2014. Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol. 2014: 463074. https://doi.org/10.1155/2014/463074
  5. Karimi K, Taherzadeh MJ. 2016. A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresour. Technol. 200: 1008-1018. https://doi.org/10.1016/j.biortech.2015.11.022
  6. Liu G, Qin Y, Li Z, Qu Y. 2013. Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era. Biotechnol. Adv. 31: 962-975. https://doi.org/10.1016/j.biotechadv.2013.03.001
  7. Burchard W, Schulz L. 1995. Functionality of the β(1,4) glycosidic linkage in polysaccharides. Macromol. Symp. 99: 57-69. https://doi.org/10.1002/masy.19950990108
  8. Warden AC, Little BA, Haritos VS. 2011. A cellular automaton model of crystalline cellulose hydrolysis by cellulases. Biotechnol. Biofuels 4: 39. https://doi.org/10.1186/1754-6834-4-39
  9. Percival Zhang YH, Himmel ME, Mielenz JR. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 24: 452-481. https://doi.org/10.1016/j.biotechadv.2006.03.003
  10. Hemsworth GR, Johnston EM, Davies GJ, Walton PH. 2015. Lytic polysaccharide monooxygenases in biomass conversion. Trends Biotechnol. 33: 747-761. https://doi.org/10.1016/j.tibtech.2015.09.006
  11. Merino ST, Cherry J. 2007. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol.108: 95-120.
  12. Voutilainen SP, Puranen T, Siika-Aho M, Lappalainen A, Alapuranen M, Kallio J, et al. 2008. Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol. Bioeng. 101: 515-528. https://doi.org/10.1002/bit.21940
  13. Taylor LE, Knott BC, Baker JO, Alahuhta PM, Hobdey SE, Linger JG, et al. 2018. Engineering enhanced cellobiohydrolase activity. Nat. Commun. 9: 1186. https://doi.org/10.1038/s41467-018-03501-8
  14. Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, et al. 2011. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat. Biotechnol. 29: 922-927. https://doi.org/10.1038/nbt.1976
  15. Morozova VV, Gusakov AV, Andrianov RM, Pravilnikov AG, Osipov DO, Sinitsyn AP. 2010. Cellulases of Penicillium verruculosum. Biotechnol. J. 5: 871-880. https://doi.org/10.1002/biot.201000050
  16. Linger JG, Taylor LE, Baker JO, Vander Wall T, Hobdey SE, Podkaminer K, et al. 2015. A constitutive expression system for glycosyl hydrolase family 7 cellobiohydrolases in Hypocrea jecorina. Biotechnol. Biofuels 8: 45. https://doi.org/10.1186/s13068-015-0230-2
  17. Ma S, Preims M, Piumi F, Kappel L, Seiboth B, Record E, et al. 2017. Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems. Microb. Cell Fact. 16: 37. https://doi.org/10.1186/s12934-017-0653-5
  18. Dillon AJ, Bettio M, Pozzan FG, Andrighetti T, Camassola M. 2011. A new Penicillium echinulatum strain with faster cellulase secretion obtained using hydrogen peroxide mutagenesis and screening with 2-deoxyglucose. J. Appl. Microbiol. 111: 48-53. https://doi.org/10.1111/j.1365-2672.2011.05026.x
  19. Gusakov AV. 2011. Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol. 29: 419-425. https://doi.org/10.1016/j.tibtech.2011.04.004
  20. Zhang Z, Liu J-L, Lan J-Y, Duan C-J, Ma Q-S, Feng J-X. 2014. Predominance of Trichoderma and Penicillium in cellulolytic aerobic filamentous fungi from subtropical and tropical forests in China, and their use in finding highly efficient β-glucosidase. Biotechnol. Biofuels 7: 107. https://doi.org/10.1186/1754-6834-7-107
  21. Arnthong J, Siamphan C, Chuaseeharonnachai C, Boonyuen N, Suwannarangsee S. 2020. Towards a miniaturized culture screening for cellulolytic fungi and their agricultural lignocellulosic degradation. J. Microbiol. Biotechnol. 30: 1670-1679. https://doi.org/10.4014/jmb.2007.07005
  22. Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, et al. 2013. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS One 8: e55185. https://doi.org/10.1371/journal.pone.0055185
  23. Liu K, Lin X, Yue J, Li X, Fang X, Zhu M, et al. 2010. High concentration ethanol production from corncob residues by fed-batch strategy. Bioresour. Technol. 101: 4952-4958. https://doi.org/10.1016/j.biortech.2009.11.013
  24. Du J, Zhang X, Li X, Zhao J, Liu G, Gao B, et al. 2018. The cellulose binding region in Trichoderma reesei cellobiohydrolase I has a higher capacity in improving crystalline cellulose degradation than that of Penicillium oxalicum. Bioresour. Technol. 266: 19-25. https://doi.org/10.1016/j.biortech.2018.06.050
  25. Li S, Li G, Zhang L, Zhou Z, Han B, Hou W, et al. 2013. A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl. Energy 102: 260-265. https://doi.org/10.1016/j.apenergy.2012.09.060
  26. Song W, Han X, Qian Y, Liu G, Yao G, Zhong Y, et al. 2016. Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system. Biotechnol. Biofuels 9: 68. https://doi.org/10.1186/s13068-016-0477-2
  27. Qin Y, Zheng K, Liu G, Chen M, Qu Y. 2013. Improved cellulolytic efficacy in Penicilium decumbens via heterologous expression of Hypocrea jecorina endoglucanase II. Arch. Biol. Sci. 65: 305-314. https://doi.org/10.2298/ABS1301305Q
  28. Gao L, Li Z, Xia C, Qu Y, Liu M, Yang P, et al. 2017. Combining manipulation of transcription factors and overexpression of the target genes to enhance lignocellulolytic enzyme production in Penicillium oxalicum. Biotechnol. Biofuels 10: 100. https://doi.org/10.1186/s13068-017-0783-3
  29. Brown NA, Ries LNA, Goldman GH. 2014. How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion. Fungal Genet. Biol. 72: 48-63. https://doi.org/10.1016/j.fgb.2014.06.012
  30. Hu Y, Xue H, Liu G, Song X, Qu Y. 2015. Efficient production and evaluation of lignocellulolytic enzymes using a constitutive protein expression system in Penicillium oxalicum. J. Ind. Microbiol. Biotechnol. 42: 877-887. https://doi.org/10.1007/s10295-015-1607-8
  31. Hong J, Tamaki H, Yamamoto K, Kumagai H. 2003. Cloning of a gene encoding a thermo-stable endo-b-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast. Biotechnol. Lett. 25: 657-661. https://doi.org/10.1023/A:1023072311980
  32. Szijarto N, Horan E, Zhang J, Puranen T, Siika-aho M, Viikari L. 2011. Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw. Biotechnol. Biofuels 4: 2. https://doi.org/10.1186/1754-6834-4-2
  33. Vaaje-Kolstad G, Forsberg Z, Loose JS, Bissaro B, Eijsink VG. 2017. Structural diversity of lytic polysaccharide monooxygenases. Curr. Opin. Struct. Biol. 44: 67-76. https://doi.org/10.1016/j.sbi.2016.12.012
  34. Gaber Y, Rashad B, Hussein R, Abdelgawad M, Ali NS, Dishisha T, et al. 2020. Heterologous expression of lytic polysaccharide monooxygenases (LPMOs). Biotechnol. Adv. 43: 107583. https://doi.org/10.1016/j.biotechadv.2020.107583
  35. Greene ER, Himmel ME, Beckham GT, Tan ZP. 2015. Glycosylation of cellulases: Engineering better enzymes for biofuels. Adv. Carbohydr. Chem. Biochem. 72: 63-112. https://doi.org/10.1016/bs.accb.2015.08.001
  36. Jeoh T, Michener W, Himmel ME, Decker SR, Adney WS. 2008. Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol. Biofuels 1: 10. https://doi.org/10.1186/1754-6834-1-10
  37. Stals I, Sandra K, Geysens S, Contreras R, Van Beeumen J, Claeyssens M. 2004. Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14: 713-724. https://doi.org/10.1093/glycob/cwh080
  38. Fagerstam LG, Pettersson LG. 1980. The 1.4-β-glucan cellobiohydrolases of Trichoderma reesei QM 9414. FEBS Lett. 119: 97-100. https://doi.org/10.1016/0014-5793(80)81006-4
  39. Badino SF, Christensen SJ, Kari J, Windahl MS, Hvidt S, Borch K, et al. 2017. Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes. Biotechnol. Bioeng. 114: 1639-1647. https://doi.org/10.1002/bit.26276
  40. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495. https://doi.org/10.1093/nar/gkt1178
  41. Billard H, Faraj A, Lopes Ferreira N, Menir S, Heiss-Blanquet S. 2012. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. Biotechnol. Biofuels 5: 9. https://doi.org/10.1186/1754-6834-5-9
  42. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, et al. 2008. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26: 553-560. https://doi.org/10.1038/nbt1403
  43. Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, et al. 2007. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 97: 1028-1038. https://doi.org/10.1002/bit.21329
  44. Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, et al. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 49: 3305-3316. https://doi.org/10.1021/bi100009p
  45. Ma L, Zhang J, Zou G, Wang C, Zhou Z. 2011. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a β-glucosidase gene from Penicillium decumbens. Enzyme Microb. Technol. 49: 366-371. https://doi.org/10.1016/j.enzmictec.2011.06.013

Cited by

  1. Contemporary proteomic research on lignocellulosic enzymes and enzymolysis: A review vol.344, pp.no.pb, 2021, https://doi.org/10.1016/j.biortech.2021.126263