DOI QR코드

DOI QR Code

Characteristics and Parameters for Adsorption of Carbol Fuchsin Dye by Coal-based Activated Carbon: Kinetic and Thermodynamic

석탄계 활성탄에 의한 Carbol Fuchsin의 흡착 특성과 파라미터: 동력학 및 열역학

  • Lee, Jong Jib (Department of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2021.02.08
  • Accepted : 2021.04.21
  • Published : 2021.06.10

Abstract

Adsorption characteristics of carbol fuchsin (CF) dye by coal-based activated carbon (CAC) were investigated using pH, initial concentration, temperature and contact time as adsorption variables. CF dissociates in water to have a cation, NH2+, which is bonded to the negatively charged surface of the activated carbon in the basic region by electrostatic attraction. Under the optimum condition of pH 11, 96.6% of the initial concentration was adsorbed. Isothermal adsorption behavior was analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models. Langmuir's equation was the best fit for the experimental results. Therefore, the adsorption mechanism was expected to be adsorbed as a monolayer on the surface of activated carbon with a uniform energy distribution. From the evaluated Langmuir's dimensionless separation coefficients (RL = 0.503~0.672), it was found that CF can be effectively treated by activated carbon. The adsorption energies determined by Temkin and Dubinin-Radushkevich models were E = 15.31~7.12 J/mol and B = 0.223~0.365 kJ/mol, respectively. Therefore, the adsorption process was physical (E < 20 J/mol, B < 8 kJ/mol). The experimental result of adsorption kinetics fit better the pseudo second order model. In the adsorption reaction of CF dye to CAC, the negative free energy change increased as the temperature increased. It was found that the spontaneity also increased with increasing temperature. The positive enthalpy change (40.09 kJ/mol) indicated an endothermic reaction.

석탄계 활성탄(CAC)에 의한 carbol fuchsin (CF) 염료의 흡착 특성을 pH, 초기농도, 온도 및 접촉시간을 흡착변수로 사용하여 조사하였다. CF는 수중에서 해리하여 양이온인 NH2+를 가지게 되는데, 염기성 영역에서 음전하를 가진 활성탄의 표면과 정전기적 인력으로 결합하였으며 최적조건인 pH 11에서 96.6%를 흡착하였다. 등온흡착은 Langmuir, Freundlich, Temkin 및 Dubinin-Radushkevich 모델을 사용하여 해석하였다. 실험결과는 Langmuir 식이 더 잘 맞았다. 따라서 흡착 메카니즘은 균일한 에너지 분포를 가진 활성탄 표면에서 단분자층으로 흡착된다고 예상되었다. 평가된 Langmuir의 무차원 분리계수 값들(RL = 0.503~0.672)로부터 활성탄에 의해 CF를 효과적으로 처리할 수 있다는 것을 알았다. Temkin 식과 Dubinin-Radushkevich 식에 의해 구한 흡착에너지는 각각 BT = 4.397~6.281 kJ/mol과 E = 1.456~2.319 J/mol이었다. 따라서 흡착공정은 물리흡착(BT < 20 J/mol, E < 8 kJ/mol)으로 나타났다. 흡착속도실험결과는 유사 2차 속도식에 더 잘 맞았다. CAC에 대한 CF 염료의 흡착반응은 온도가 올라갈수록 자유에너지 변화의 음수값이 증가하였기 때문에 온도 증가와 함께 자발성도 높아지는 것으로 나타났다. 양수 값의 엔탈피 변화(12.747 kJ/mol)는 흡열반응임을 알려주었다.

Keywords

References

  1. S. Salem, Z. Teimouri, and A. Salem, Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst, Adv. Powder Technol., 31, 4301-4309 (2020). https://doi.org/10.1016/j.apt.2020.09.007
  2. K. J. Mhatre, Microbial decolorization of carbol fuchsin dye by Acinetobacter spp., IJRAR, 8, 26-34 (2021).
  3. MSDS Santa Cruz Biotechnology, Carbol Fuchsin, https://datasheets.scbt.com/sc-214663.pdf (2021).
  4. P. B. Koli, K. H. Kapadnisb, and U. G. Deshpande, Transition metal decorated Ferrosoferric oxide (Fe3O4): An expeditious catalyst for photodegradation of carbol fuchsin in environmental remediation, J. Environ. Chem. Eng., 7, 103373 (2019). https://doi.org/10.1016/j.jece.2019.103373
  5. S. G. Shinde and V. S. Shrivastava, Ni and Zn modifed acid activated montmorillonite clay for efective removal of carbol fuchsin dye from aqueous solution, SN Appl. Sci., 2, 519 (2020). https://doi.org/10.1007/s42452-020-2295-1
  6. L. Zuo, W. Song, T. Shi, C. Lv, J. Yao , J. Liu, and Y. Weng, Adsorption of aniline on template-synthesized porous carbons, Micropor. Mesopor. Mater., 200, 174-181 (2014). https://doi.org/10.1016/j.micromeso.2014.08.036
  7. A. Kausar, M. Iqbal, A. Javeda, K. Aftab, Z.-i-H. Nazli, H. N. Bhatti, and S. Nouren, Dyes adsorption using clay and modified clay: A review, J. Mol. Liq., 256, 395-407 (2018). https://doi.org/10.1016/j.molliq.2018.02.034
  8. J. J. Lee, Study on adsorption characteristics of reactive red 120 by coal-based granular activated carbon: Isotherm, kinetic and thermodynamic parameters, Appl. Chem. Eng., 31, 164-171 (2020).
  9. Y. Achour, L. Bahsis, E-H. Ablouh, H. Yazid, M. R. Laamari, and M. E. Haddad, Insight into adsorption mechanism of congo red dye onto Bombax buonopozense bark cctivated-carbon using central composite design and DFT studies, Surf. Interfaces, 23, 100977 (2021). https://doi.org/10.1016/j.surfin.2021.100977
  10. S. Kaur, S. Rani, R. K. Mahajan, M. Asif, and V. K. Gupta, Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics, J. Ind. Eng. Chem., 22, 19-27 (2015). https://doi.org/10.1016/j.jiec.2014.06.019
  11. I. Belbachir and B. Makhoukhi, Adsorption of bezathren dyes onto sodic bentonite from aqueous solutions, J. Taiwan Inst. Chem. Eng., 75, 105-111 (2017). https://doi.org/10.1016/j.jtice.2016.09.042
  12. T. N. V. Souza, S. M. L, Carvalho, M. G. A. Vieira, M. G. C. Silva, and D. S. B. Brasil, Adsorption of basic dyes onto activated carbon: Experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors, Appl. Surf. Sci., 448, 662-670 (2018). https://doi.org/10.1016/j.apsusc.2018.04.087
  13. S. Kaur, S. Rani, R. K. Mahajan, M. Asif, and V. K. Gupta, Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics, J. Ind. Eng. Chem., 22, 19-27 (2015). https://doi.org/10.1016/j.jiec.2014.06.019
  14. E. H. Lee, K. Y. Lee, K. W. Kim, H. J. Kim, I. S. Kim, D. Y. Chung, J. K. Moon and J. W. Choi, Removal of I by adsorption with AgX (Ag-impregnated X Zeolite) from high-radioactive seawater waste, J. Nucl. Fuel Cycle Waste Technol., 14(3), 223-234 (2016). https://doi.org/10.7733/JNFCWT.2016.14.3.223
  15. M. Pan, X. Lin, J. Vie, and X. Huang, Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano- composites, Royal Soc. Chem., 7, 4492-4500 (2017).
  16. F.-C. Wu, R-L. Tseng, and R-S Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153, 1-8 (2009). https://doi.org/10.1016/j.cej.2009.04.042
  17. W. S. W. Ngah, and M. A. K. M. Hanafiah, Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: Kinetic, equilibrium and thermodynamic studies, Biochem. Eng. J., 39, 521-530 (2008). https://doi.org/10.1016/j.bej.2007.11.006
  18. S. Chowdhury, R. Mishra, P. Saha, and P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk, Desalination, 265, 159-168 (2011). https://doi.org/10.1016/j.desal.2010.07.047
  19. S. Kaur, S. Rani, R. K. Mahajan, M. Asif, and V. K. Gupta, Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics, J. Ind. Eng. Chem., 22, 19-27 (2015). https://doi.org/10.1016/j.jiec.2014.06.019