DOI QR코드

DOI QR Code

석회암 지대 참나무속 식물에 공생하는 외생균근균의 군집구조

Community Structure of Ectomycorrhizal Fungal communities Colonizing Quercus spp. in Limestone Areas of Korea

  • 이종철 (한국교원대학교 생물교육과) ;
  • 박혁 (한국교원대학교 생물교육과) ;
  • 엄안흠 (한국교원대학교 생물교육과)
  • Lee, Jong-Chul (Department of Biology Education, Korea National University of Education) ;
  • Park, Hyeok (Department of Biology Education, Korea National University of Education) ;
  • Eom, Ahn-Heum (Department of Biology Education, Korea National University of Education)
  • 투고 : 2021.01.20
  • 심사 : 2021.03.22
  • 발행 : 2021.03.31

초록

국내 석회암지대에 서식하는 참나무류의 뿌리에서 외생균근균(ectomycorrhizal fungi, ECM)의 다양성을 분석하였다. 분자분석을 통해 참나무류에 공생하고 있는 45속의 ECM을 확인하였다. ECM의 종 다양성 지수는 pH, 칼슘 농도, 유효인산 농도가 증가할수록 감소하는 경향을 보였고, 전질소 함량과 유기물 함량이 증가할수록 증가하는 경향을 보였다. 군집분석 결과 석회토양의 특징인 pH와 칼슘 농도와 양의 상관관계를 갖는 ECM은 Sebacina, Tomentella, Tuber, Densospora, Inocybe, Suillus, Piloderma속에 속하는 균주들 이였으며, 이들은 토양 안정성이 약화된 석회암지대의 생태복원에 활용될 수 있을 것으로 판단된다.

In this study, we analyzed the diversity of ectomycorrhizal (ECM) fungal communities of Quercus spp. roots in the limestone area. We identified 45 generd of ECM using next generation sequencing (NGS) analysis. Soil chemical composition analysis confirmed soil pH, substitution calcium concentration, total nitrogen content, organic phosphate, and organic matter content. Shannon's Index was calculated according to the changes in soil chemical composition. The results of cluster analysis showed that Sebacina, Tomentella, Tuber, Densospora, Inocybe, Suillus, and Piloderma were the main genera of symbiotic ECM fungi that thrived in soil with high pH and calcium content.

키워드

과제정보

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (IPET319106052HD050).

참고문헌

  1. Kim JH, Mun HT, Kwak YS. Community structure and soil properties of the Pinus densiflora forests in limestone areas. KJEE 1990;13:285-95.
  2. Kang YP. Study of the pedogenesis of red soils and karst geomorphology in the Paleozoic limestone area in Korea: Exemples of the region of Youngweol, Pyeongchang and Samcheog. JKESS 1992;13:156-75.
  3. Kim JR, Kang SG, Kang HB, Park SK, Park CW. A study on the slope analysis of weathered limestone soils during rainfalls. J Eng Geol 2005;15:9-17.
  4. Khater C, Martin A, Maillet J. Spontaneous vegetation dynamics and restoration prospects for limestone quarries in Lebanon. Appl Veg Sci 2003;6:199-204. https://doi.org/10.1111/j.1654-109X.2003.tb00580.x
  5. Clemente AS, Werner C, Maguas C, Cabral MS, Martins-Loucao MA, Correia O. Restoration of a limestone quarry: Effect of soil amendments on the establishment of native Mediterranean sclerophyllous shrubs. Restor Ecol 2004;12:20-8. https://doi.org/10.1111/j.1061-2971.2004.00256.x
  6. Partel M, Kalamees R, Zobel M, Rosen E. Restoration of species-rich limestone grassland communities from overgrown land: The importance of propagule availability. Ecol Eng 1998;10:275-86. https://doi.org/10.1016/S0925-8574(98)00014-7
  7. Hutchinson TC. A physiological study of Teucrium scorodonia ecotypes which differ in their susceptibility to lime-induced chlorosis and iron-deficiency chlorosis. Plant Soil 1968;28:81-105. https://doi.org/10.1007/BF01349179
  8. Quoreshi AM. The use of mycorrhizal biotechnology in restoration of disturbed ecosystem. Mycorrhiza: Springer; 2008. p. 303-20.
  9. Baier R, Ingenhaag J, Blaschke H, Gottlein A, Agerer R. Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 2006;16:197-206. https://doi.org/10.1007/s00572-006-0035-z
  10. Lindahl BO, Taylor AFS, Finlay RD. Defining nutritional constraints on carbon cycling in boreal forests-towards a lessphytocentric'perspective. Plant Soil 2002;242:123-35. https://doi.org/10.1023/A:1019650226585
  11. Smith SE, Read DJ. Mycorrhizal symbiosis. Cambridge: Academic press; 2010.
  12. Koide RT, Xu B, Sharda J, Lekberg Y, Ostiguy N. Evidence of species interactions within an ectomycorrhizal fungal community. New Phytol 2005;165:305-16. https://doi.org/10.1111/j.1469-8137.2004.01216.x
  13. O'Dell TE, Ammirati JF, Schreiner EG. Species richness and abundance of ectomycorrhizal basidiomycete sporocarps on a moisture gradient in the Tsuga heterophylla zone. Can J Bot 2000;77:1699-711. https://doi.org/10.1139/b99-144
  14. Ishida TA, Nara K, Hogetsu T. Host effects on ectomycorrhizal fungal communities: Insight from eight host species in mixed conifer-broadleaf forests. New Phytol 2007;174:430-40. https://doi.org/10.1111/j.1469-8137.2007.02016.x
  15. Gehring CA, Whitham TG. Comparisons of ectomycorrhizae on pinyon pines (Pinus edulis; Pinaceae) across extremes of soil type and herbivory. Am J Bot 1994;81:1509-16. https://doi.org/10.2307/2445327
  16. Bakker MR, Garbaye J, Nys C. Effect of liming on the ectomycorrhizal status of oak. For Ecol Manag 2000;126:121-31. https://doi.org/10.1016/S0378-1127(99)00097-3
  17. Opik M, Metsis M, Daniell TJ, Zobel M, Moora M. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 2009;184:424-37. https://doi.org/10.1111/j.1469-8137.2009.02920.x
  18. Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 2007;35:e120. https://doi.org/10.1093/nar/gkm541
  19. Peay KG, Kennedy PG, Bruns TD. Fungal community ecology: a hybrid beast with a molecular master. Bioscience 2008;58:799-810. https://doi.org/10.1641/B580907
  20. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 2012;6:1621-4. https://doi.org/10.1038/ismej.2012.8
  21. Gibson J, Shokralla S, Porter TM, King I, van Konynenburg S, Janzen DH, Hallwachs W, Hajibabaei M. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. PNAS 2014;111:8007-12. https://doi.org/10.1073/pnas.1406468111
  22. Wu LY, Wen CQ, Qin YJ, Yin HQ, Tu QC, van Nostrand JD, Yuan T, Yuan MT, Deng Y, Zhou JZ. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol 2015;15:1-12. https://doi.org/10.1186/s12866-014-0320-5
  23. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 2010;10:189. https://doi.org/10.1186/1471-2180-10-189
  24. Shannon CE. A mathematical theory of communication. Bell Syst Tech J 1948;27:379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  25. Erland S, Soderstrom B. Effects of liming on ectomycorrhizal fungi infecting Pinus sylvestris L. I. Mycorrhizal infection in limed humus in the laboratory and isolation of fungi from mycorrhizal roots. New Phytol 1990;115:675-82. https://doi.org/10.1111/j.1469-8137.1990.tb00499.x
  26. Aggangan NS, Dell B, Malajczuk N. Effects of soil pH on the ectomycorrhizal response of Eucalyptus urophylla seedlings. New Phytol 1996;134:539-46. https://doi.org/10.1111/j.1469-8137.1996.tb04372.x
  27. Giltrap NJ, Lewis DH. Inhibition of growth of ectomycorrhizal fungi in culture by phosphate. New Phytol 1981;87:669-75. https://doi.org/10.1111/j.1469-8137.1981.tb01701.x
  28. Nicolas C, Martin-Bertelsen T, Floudas D, Bentzer J, Smits M, Johansson T, Troein C, Persson P, Tunlid A. The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME J 2019;13:977-88. https://doi.org/10.1038/s41396-018-0331-6
  29. Fransson PMA, Taylor AFS, Finlay RD. Effects of continuous optimal fertilization on belowground ectomycorrhizal community structure in a Norway spruce forest. Tree Physiol 2000;20:599-606. https://doi.org/10.1093/treephys/20.9.599
  30. Ponge JF. Ecological study of a forest humus by observing a small volume I. Penetration of pine litter by mycorrhizal fungi. Eur J Plant Pathol 1990;20:290-303.
  31. Vogt KA, Edmunds RL, Grier C. Dynamics of ectomycorrhizae in Abies amabilis stands: the role of Cenococcum graniforme. Ecography 1981;4:167-73. https://doi.org/10.1111/j.1600-0587.1981.tb00994.x
  32. Lilleskov EA, Fahey TJ, Horton TR, Lovett GM. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 2002;83:104-15. https://doi.org/10.1890/0012-9658(2002)083[0104:befcco]2.0.co;2
  33. Ge ZW, Brenneman T, Bonito G, Smith ME. Soil pH and mineral nutrients strongly influence truffles and other ectomycorrhizal fungi associated with commercial pecans (Carya illinoinensis). Plant Soil 2017;418:493-505. https://doi.org/10.1007/s11104-017-3312-z
  34. Veerkamp MT, De Vries BWL, Kuyper TW. Shifts in species composition of lignicolous macromycetes after application of lime in a pine forest. Mycol Res 1997;101:1251-6. https://doi.org/10.1017/S0953756297004036
  35. Taylor AFS, Finlay RD. Effects of liming and ash application on below ground ectomycorrhizal community structure in two Norway spruce forests. Water Air Soil Pollut 2003;3:63-76. https://doi.org/10.1023/A:1024171329124
  36. Arocena JM, Glowa KR, Massicotte HB, Lavkulich L. Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in the Ae horizon of a luvisol. Can J Soil Sci 1999;79:25-35. https://doi.org/10.4141/S98-037
  37. Bakker M, Garbaye J, Nys C. Effect of liming on the ectomycorrhizal status of oak. Forest Ecol Manag 2000;126:121-31. https://doi.org/10.1016/S0378-1127(99)00097-3
  38. Kjoller R, Clemmensen KE. Belowground ectomycorrhizal fungal communities respond to liming in three southern Swedish coniferous forest stands. For Ecol Manag 2009;257:2217-25. https://doi.org/10.1016/j.foreco.2009.02.038
  39. Lehto T. Effects of liming and boron fertilization on mycorrhizas of Picea abies. Plant Soil 1994;163:65-8. https://doi.org/10.1007/BF00033941