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AN OPTIMAL INEQUALITY FOR WARPED PRODUCT

LIGHTLIKE SUBMANIFOLDS

Sangeet Kumar∗ and Megha Pruthi

Abstract. In this paper, we establish several geometric characterizations

focusing on the relationship between the squared norm of the second fun-
damental form and the warping function of SCR-lightlike warped product
submanifolds in an indefinite Kaehler manifold. In particular, we find an
estimate for the squared norm of the second fundamental form h in terms

of the Hessian of the warping function λ for SCR-lightlike warped prod-
uct submanifolds of an indefinite complex space form. Consequently, we

derive an optimal inequality, namely

||h||2 ≥ 2q{∆(lnλ) + ||∇(lnλ)||2 +
c

2
p},

for SCR-lightlike warped product submanifolds in an indefinite complex
space form. We also provide one non-trivial example for this class of

warped products in an indefinite Kaehler manifold.

1. Introduction

In 1969, Bishop and O’Neill [4] introduced a natural framework to construct
negatively curved manifolds by giving the notion of warped product manifolds.
From the application point of view, warped product manifolds have been suc-
cessfully employed in the study of black holes and space-time near bodies with
large gravitational force (cf., [15]). In furtherance of it, Chen [5] studied CR-
warped product submanifolds of Kaehler manifolds and proved that warped
product CR-submanifolds of the type N⊥ ×λ NT do not exist in Kaehler man-
ifolds such that NT and N⊥ respectively denotes a complex submanifold and a
totally real submanifold of a Kaehler manifold. Then, he proved the existence
of CR-warped product submanifolds of the type NT ×λN⊥ and also established
a geometric inequality for the second fundamental form in terms of the warping
function for this kind of warped product submanifolds. After that, many re-
searchers investigated warped product submanifolds in different ambient space
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settings to find geometrical inequalities arising from warped products (cf., [1],
[2], [6], [7], [12], [14]).

On the other hand, one may observe that most of the available works on
warped product submanifolds is explored on manifolds with non-degenerate
metric. Thus, the available results may not be suitable to study those topics
in mathematical physics, where indefinite metrics are employed. For instance,
warped products have been significantly utilized in the study of black holes
and cosmological models (cf., [11], [15]). In cosmological models, there do ex-
ist some points, where the warping function becomes zero. These points are
called singular points. Further, at singular points, the metric of the product
manifold becomes degenerate. Thus to deal with the degenerate metric, one
possible solution is to use the techniques of semi-Riemannian geometry (cf.,
[17]). In this context, Duggal [9] introduced the concept of warped product
lightlike manifolds, where he constructed two types of warped product light-
like manifolds. On a similar note, Sahin [16] studied warped product lightlike
submanifolds of semi-Riemannian manifolds. Very recently, Kumar [13] inves-
tigated the non-existence of warped product SCR-lightlike submanifolds of the
type N⊥ ×λ NT of indefinite Kaehler manifolds and proved the existence of
warped product SCR-lightlike submanifolds of the type NT ×λ N⊥ in indef-
inite Kaehler manifolds. But till date, no attempts have been made to find
geometrical inequalities associated with warped product lightlike submanifolds
in semi-Riemannian manifolds.

In this paper, we emphasize on the relationship between the second funda-
mental form and the warping function for SCR-lightlike warped product sub-
manifolds in indefinite Kaehler manifolds. Particularly, we derive an estimate
for the squared norm of the second fundamental form in terms of the Hes-
sian of the warping function λ for SCR-lightlike warped product submanifolds
of an indefinite complex space form. Consequently, we establish a geometric
inequality giving a lower bound for the squared norm of the second fundamen-
tal form for SCR-lightlike warped product submanifolds in indefinite complex
space forms. Finally, we provide an example for this class of warped products
in an indefinite Kaehler manifold.

2. Preliminaries

2.1. Geometry of lightlike submanifolds

In this section, we recall some basic formulae and notations on lightlike
submanifolds for later use following [10].

Assume a submanifold (Nn, g) of a semi-Riemannian manifold (Ñm+n, g̃),
where the metric g̃ is of constant index q satisfying m,n ≥ 1, 1 ≤ q ≤ m+n−1.
If g̃ is degenerate on TN , then TpN and TpN

⊥ both are degenerate and not
complementary to one another. Thus, there exists a subspace Rad(TpN) =
TpN ∩ TpN

⊥, known as a radical subspace. If Rad(TN) : p ∈ N → Rad(TpN)
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is a smooth distribution on N of rank r(> 0), then N is known as an r-lightlike

submanifold of Ñ and Rad(TN) is called the radical distribution on N . While
the radical distribution Rad(TN) of TN is defined as

Rad(TN) = ∪p∈N{ξ ∈ TpN |g(u, ξ) = 0, ∀ u ∈ TpN, ξ ̸= 0}.
Thus, the tangent bundle TN and the normal bundle TN⊥ are decomposed as

TN = Rad(TN) ⊥ S(TN) and TN⊥ = Rad(TN) ⊥ S(TN⊥).

Theorem 2.1. [10] For an r-lightlike submanifold (N, g, S(TN), S(TN⊥))

of a semi-Riemannian manifold (Ñ , g̃), there exists a complementary vector
bundle ltr(TN) of Rad(TN) in S(TN⊥)⊥ and basis of Γ(ltr(TN) |u) consisting
of smooth section {Ni} of S(TN⊥)⊥ |u, where u is a coordinate neighborhood
of N satisfying

g̃(Ni, Nj) = 0, g̃(Ni, ξj) = δij , for i, j ∈ {1, 2, .., r},
where {ξ1, ..., ξr} is the lightlike basis of Γ(Rad(TN)).

As a result, the decomposition of the tangent bundle TÑ is given by

(1) TÑ |N = TN ⊕ tr(TN) = S(TN) ⊥ (Rad(TN)⊕ ltr(TN)) ⊥ S(TN⊥).

Further, the Gauss and Weingarten formulae are given by

∇̃Y1Y2 = ∇Y1Y2 + h(Y1, Y2), ∇̃Y1V = −AV Y1 +∇⊥
Y1
V,

for X,Y ∈ Γ(TN) and V ∈ Γ(tr(TN)), where ∇̃ represents the Levi-Civita

connection on Ñ . In view of decomposition (1), the Gauss and Weingartan
formulae become

(2) ∇̃Y1
Y2 = ∇Y1

Y2 + hl(Y1, Y2) + hs(Y1, Y2),

(3) ∇̃Y1
N ′ = −AN ′Y1 +∇l

Y1
N ′ +Ds(Y1, N

′),

(4) ∇̃Y1W = −AWY1 +∇s
Y1
W +Dl(Y1,W ),

for Y1, Y2 ∈ Γ(TN), W ∈ Γ(S(TN⊥)) and N ′ ∈ Γ(ltr(TN)).
Furthermore, employing Eqs. (2)-(4), we derive

(5) g(AWY1, Y2) = g̃(hs(Y1, Y2),W ) + g̃(Y2, D
l(Y1,W )),

(6) g̃(Ds(Y1, N
′),W ) = g̃(AWY1, N

′).

Let us denote by R̃ and R the curvature tensors of ∇̃ and ∇ respectively then
we have

R̃(Y1, Y2)Y3 =R(Y1, Y2)Y3 +Ahl(Y1,Y3)Y2 −Ahl(Y2,Y3)Y1 +Ahs(Y1,Y3)Y2

−Ahs(Y2,Y3)Y1 + (∇Y1
hl)(Y2, Y3)− (∇Y2

hl)(Y1, Y3)

+Dl(Y1, h
s(Y2, Y3))−Dl(Y2, h

s(Y1, Y3)) + (∇Y1
hs)(Y2, Y3)

− (∇Y2h
s)(Y1, Y3) +Ds(Y1, h

l(Y2, Y3))−Ds(Y2, h
l(Y1, Y3)).
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Further, the equation of Codazzi is given by

(R̃(Y1, Y2)Y3)
⊥ =(∇Y1

hl)(Y2, Y3)− (∇Y2
hl)(Y1, Y3) +Dl(Y1, h

s(Y2, Y3))

−Dl(Y2, h
s(Y1, Y3)) + (∇Y1h

s)(Y2, Y3)− (∇Y2h
s)(Y1, Y3)

+Ds(Y1, h
l(Y2, Y3))−Ds(Y2, h

l(Y1, Y3)),(7)

where

(8) (∇Y1
hs)(Y2, Y3) = ∇s

Y1
hs(Y2, Y3)− hs(∇Y1

Y2, Y3)− hs(Y2,∇Y1
Y3),

(9) (∇Y1h
l)(Y2, Y3) = ∇l

Y1
hl(Y2, Y3)− hl(∇Y1Y2, Y3)− hl(Y2,∇Y1Y3),

for Y1, Y2, Y3 ∈ Γ(TN).

2.2. Indefinite Kaehler manifolds

Let (Ñ , g̃) be an indefinite almost Hermitian manifold with an almost com-

plex structure J̃ of the type (1, 1) [3]. Then

(10) J̃2 = −I, g̃(J̃Y1, J̃Y2) = g̃(Y1, Y2), ∀ Y1, Y2 ∈ Γ(TÑ).

An indefinite almost Hermitian manifold is called an indefinite Kaehler mani-
fold if

(11) (∇̃Y1
J̃)Y2 = 0,

where ∇̃ is the Levi-Civita connection on Ñ .
An indefinite complex space form Ñ(c) is an indefinite Kaehler manifold Ñ

with constant holomorphic curvature c and its curvature R̃ is given by

R̃(Y1, Y2)Y3 =
c

4
{g̃(Y2, Y3)Y1 − g̃(Y1, Y3)Y2 + g̃(J̃Y2, Y3)J̃Y1 − g̃(J̃Y1, Y3)J̃Y2

+ 2g̃(Y1, J̃Y2)J̃Y3}(12)

for Y1, Y2, Y3 ∈ Γ(TÑ).

2.3. Screen Cauchy-Riemann SCR-lightlike submanifolds

Definition 2.2. [8] Let (N, g, S(TN)) be a real lightlike submanifold of

an indefinite Kaehler manifold (Ñ , g̃, J̃). Then N is called a Screen Cauchy-
Riemann (SCR)-lightlike submanifold, if the following conditions are satisfied:

(A) There exists a real non-null distribution D ⊂ S(TN) such that

S(TN) = D ⊕D⊥, J̃D⊥ ⊂ S(TN⊥), D ∩D⊥ = 0,

where D⊥ is an orthogonal complementary distribution to D in S(TN).

(B) Rad(TN) is invariant with respect to J̃ .

Further, it follows that TN = D′ ⊕D⊥ where D′ = D ⊥ Rad(TN).
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3. SCR-lightlike warped product submanifolds of indefinite Kaehler
manifolds

In [13], Kumar investigated SCR-lightlike warped product submanifolds
of indefinite Kaehler manifolds. He proved that there does not exist SCR-
lightlike warped product submanifolds of the type N⊥ ×λ NT in indefinite
Kaehler manifolds. Further, the existence of SCR-lightlike warped product
submanifolds of the type NT ×λN⊥ was obtained by developing several results
in terms of the canonical structures. Next, it is obvious to seek geometric
estimates arising for this class of warped products. Therefore, in this section,
we find some characterization theorems giving geometric estimates for SCR-
lightlike warped product submanifolds of the type NT ×λ N⊥ in indefinite
Kaehler manifolds. Before proceeding, we recall an important result on warped
product manifolds given by Bishop and O’Neill [4] as follows.

Theorem 3.1. [4] For a warped product manifold N = N1 ×λ N2, one has

∇Y1
Y2 ∈ Γ(TN1),

(13) ∇Y1Z1 = ∇Z1Y1 = (Y1lnλ)Z1,

∇Z1
Z2 = −g(Z1, Z2)

λ
∇λ.

for Y1, Y2 ∈ Γ(TN1) and Z1, Z2 ∈ Γ(TN2).

Note: Throughout this paper, we shall denote an indefinite Kaehler man-
ifold by Ñ , an indefinite complex space form by Ñ(c) and warped product by
w.p., unless otherwise mentioned.
Firstly, we give a basic lemma for later use.

Lemma 3.2. Consider N = NT ×λ N⊥ be a SCR-lightlike w.p. submani-
fold of Ñ . Then

(14) g̃(hs(J̃Y1, Z1), J̃Z1) = (Y1lnλ)||Z1||2

and

(15) g̃(hs(Y1, Z1), J̃Z1) = −(J̃Y1lnλ)||Z1||2,

where Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥).

Proof. For Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥), employing Eqs. (2), (10), (11) and
(13), we attain

g̃(hs(J̃Y1, Z1), J̃Z1) = g̃(∇̃Z1 J̃Y1 −∇Z1 J̃Y1, J̃Z1)

= g̃(∇̃Z1
J̃Y1, J̃Z1)− (J̃Y1lnλ)g̃(Z1, J̃Z1)

= g̃(J̃∇̃Z1
Y1, J̃Z1) = g̃(∇̃Z1

Y1, Z1) = g(∇Z1
Y1, Z1)

= (Y1lnλ)||Z1||2.
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Similarly, using Eqs. (2), (10), (11) and (13), for Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥),
we derive

g̃(hs(Y1, Z1), J̃Z1) = −(J̃Y1lnλ)||Z1||2.

This completes the proof.

Corollary 3.3. Let N = NT ×λ N⊥ be a SCR-lightlike w.p. submanifold
of Ñ . Then

(i) g̃(hs(J̃Y1,∇Y1Z1), J̃Z1) = (Y1lnλ)
2||Z1||2,

(ii) g̃(hs(Y1,∇J̃Y1
Z1), J̃Z1) = −(J̃Y1lnλ)

2||Z1||2,

for Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥).

Proof. The result follows from Eq. (13) and Lemma 3.2.

Theorem 3.4. Consider N = NT ×λ N⊥ be a SCR-lightlike w.p. sub-
manifold of Ñ . Then we have

||hs(J̃Y1, Z1)||2 + ||hs(Y1, Z1)||2 =(Y1lnλ)
2||Z1||2 + (J̃Y1lnλ)

2||Z1||2

+ 2g̃(J̃hs(Y1, Z1), h
s(J̃Y1, Z1)),

for Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥).

Proof. For Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥), using Eqs. (2), (11), (13) and (14),
we get

||hs(J̃Y1, Z1)||2 =g̃(hs(J̃Y1, Z1), h
s(J̃Y1, Z1))

=g̃(∇̃Z1
J̃Y1 −∇Z1

J̃Y1, h
s(J̃Y1, Z1))

=g̃(∇̃Z1
J̃Y1, h

s(J̃Y1, Z1))− (J̃Y1lnλ)g̃(Z1, h
s(J̃Y1, Z1))

=g̃(J̃∇̃Z1Y1, h
s(J̃Y1, Z1))

=g̃(J̃∇Z1
Y1, h

s(J̃Y1, Z1)) + g̃(J̃hs(Y1, Z1), h
s(J̃Y1, Z1))

=(Y1lnλ)g̃(J̃Z1, h
s(J̃Y1, Z1)) + g̃(J̃hs(Y1, Z1), h

s(J̃Y1, Z1))

=(Y1lnλ)
2||Z1||2 + g̃(J̃hs(Y1, Z1), h

s(J̃Y1, Z1)).(16)

Similarly, from Eqs. (2), (10), (11), (13) and (15), for Y1 ∈ Γ(D′) and Z1 ∈
Γ(D⊥), we derive

||hs(Y1, Z1)||2 =(J̃Y1lnλ)
2||Z1||2 + g̃(J̃hs(Y1, Z1), h

s(J̃Y1, Z1)).(17)

Then on adding Eqs. (16) and (17), the proof follows.
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4. SCR-lightlike warped product submanifolds in an indefinite
complex space form

Consider (N, g) be an n-dimensional Riemannian manifold and λ be a
smooth function defined on N . Then the Hessian of λ is given by

(18) Hλ(Y1, Y2) = Y1Y2λ− (∇Y1Y2)λ,

for Y1, Y2 ∈ Γ(TN).
Assume that {Y1, ..., Yn} be an orthogonal basis of TN , then the Laplacian of
λ is defined by

(19) ∆λ =

n∑
i=1

{(∇Yi
Yi)λ− YiYiλ}.

Next, we present an important result on SCR-lightlike w.p. submanifolds
in Ñ(c) involving the squared norm of the second fundamental form and the
Hessian of the warping function λ.

Theorem 4.1. Assume that N = NT ×λ N⊥ be a SCR-lightlike w.p.
submanifold of Ñ(c). Then

||hs(J̃Y1, Z1)||2 + ||hs(Y1, Z1)||2 = {H lnλ(Y1, Y1) +H lnλ(J̃Y1, J̃Y1)}||Z1||2

+ { c
2
||Y1||2 + (Y1lnλ)

2 + (J̃Y1lnλ)
2}||Z1||2,(20)

for Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥).

Proof. For Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥), taking in account Eq. (12), we get

(21) R̃(Y1, J̃Y1, Z1, J̃Z1) = − c

2
||Y1||2||Z1||2.

On the other hand, from Eq. (7), for Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥), we attain

(R̃(Y1, J̃Y1)Z1)
⊥ =(∇Y1

hl)(J̃Y1, Z1)− (∇J̃Y1
hl)(Y1, Z1)

+Dl(Y1, h
s(J̃Y1, Z1))−Dl(J̃Y1, h

s(Y1, Z1))

+ (∇Y1h
s)(J̃Y1, Z1))− (∇J̃Y1

hs)(Y1, Z1)

+Ds(Y1, h
l(J̃Y1, Z1))−Ds(J̃Y1, h

l(Y1, Z1)).(22)

Taking the inner product of Eq. (22) w.r.t. J̃Z1 and using Eqs. (8) and (9),
we derive

R̃(Y1, J̃Y1, Z1, J̃Z1) =g̃(∇s
Y1
hs(J̃Y1, Z1), J̃Z1)− g̃(hs(∇Y1

J̃Y1, Z1), J̃Z1)

− g̃(hs(J̃Y1,∇Y1
Z1), J̃Z1)− g̃(∇s

J̃Y1
hs(Y1, Z1), J̃Z1)

+ g̃(hs(∇J̃Y1
Y1, Z1), J̃Z1) + g̃(hs(Y1,∇J̃Y1

Z1), J̃Z1)

+ g̃(Ds(Y1, h
l(J̃Y1, Z1)), J̃Z1)

− g̃(Ds(J̃Y1, h
l(Y1, Z1)), J̃Z1).(23)
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From Eq. (4), we acquire

g̃(∇̃Y1
hs(J̃Y1, Z1), J̃Z1) =− g̃(Ahs(J̃Y1,Z1)

Y1, J̃Z1) + g̃(∇s
Y1
hs(J̃Y1, Z1), J̃Z1)

+ g̃(Dl(hs(J̃Y1, Z1), Y1), J̃Z1),

which further yields

(24) g̃(∇̃Y1
hs(J̃Y1, Z1), J̃Z1) = g̃(∇s

Y1
hs(J̃Y1, Z1), J̃Z1).

Since ∇̃ is a metric connection on Ñ , therefore

g̃(∇̃Y1
hs(J̃Y1, Z1), J̃Z1) = Y1g̃(h

s(J̃Y1, Z1), J̃Z1)− g̃(hs(J̃Y1, Z1), ∇̃Y1
J̃Z1),

(25)

where Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥). Then from Eqs. (24) and (25), we obtain
(26)

g̃(∇s
Y1
hs(J̃Y1, Z1), J̃Z1) = Y1g̃(h

s(J̃Y1, Z1), J̃Z1)− g̃(hs(J̃Y1, Z1), ∇̃Y1 J̃Z1).

Next using Eqs. (2), (11), (13), (14) and (16) in Eq. (26), we derive

g̃(∇s
Y1
hs(J̃Y1, Z1), J̃Z1) =Y1{(Y1lnλ)||Z1||2} − g̃(hs(J̃Y1, Z1), J̃∇̃Y1Z1)

=Y1(Y1lnλ)||Z1||2 + 2(Y1lnλ)
2||Z1||2

− g̃(hs(J̃Y1, Z1), J̃∇Y1
Z1)

− g̃(hs(J̃Y1, Z1), J̃h
s(Y1, Z1))

=Y1(Y1lnλ)||Z1||2 + 2(Y1lnλ)
2||Z1||2

− (Y1lnλ)g̃(h
s(J̃Y1, Z1), J̃Z1)

− g̃(hs(J̃Y1, Z1), J̃h
s(Y1, Z1))

=Y1(Y1lnλ)||Z1||2 + 2(Y1lnλ)
2||Z1||2

− ||hs(J̃Y1, Z1)||2.(27)

Similarly, one has

g̃(∇s
J̃Y1

hs(Y1, Z1), J̃Z1) =− J̃Y1(J̃Y1lnλ)||Z1||2 − 2(J̃Y1lnλ)
2||Z1||2

+ ||hs(Y1, Z1)||2.(28)

Further from Eqs. (5) and (14), we derive

g(AJ̃Z1
Z1, J̃Y1) = g̃(hs(J̃Y1, Z1), J̃Z1) + g̃(Dl(Z1, J̃Z1), J̃Y1)

= (Y1lnλ)||Z1||2 + g̃(Dl(Z1, J̃Z1), J̃Y1).

As NT is totally geodesic, therefore for Y1 ∈ Γ(TNT ), we have ∇Y1Y1 ∈
Γ(TNT ). Thus replacing Y1 by ∇Y1

Y1, the above equation becomes

(29) g(AJ̃Z1
Z1, J̃∇Y1

Y1) = (∇Y1
Y1lnλ)||Z1||2 + g̃(Dl(Z1, J̃Z1), J̃∇Y1

Y1).
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Then for Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥), using Eqs. (2), (5) and (11), we derive

g(AJ̃Z1
Z1, J̃∇Y1

Y1) =g̃(AJ̃Z1
Z1, J̃∇̃Y1

Y1) = g̃(AJ̃Z1
Z1, ∇̃Y1

J̃Y1)

=g(AJ̃Z1
Z1,∇Y1

J̃Y1)

=g̃(hs(Z1,∇Y1 J̃Y1), J̃Z1) + g̃(Dl(Z1, J̃Z1),∇Y1 J̃Y1),

which further gives
(30)

g̃(hs(Z1,∇Y1
J̃Y1), J̃Z1) = g(AJ̃Z1

Z1, J̃∇Y1
Y1)− g̃(Dl(Z1, J̃Z1),∇Y1

J̃Y1).

Then from Eqs. (29) and (30), we have

(31) g̃(hs(Z1,∇Y1 J̃Y1), J̃Z1) = (∇Y1Y1lnλ)||Z1||2.

By replacing Y1 by J̃Y1 in Eq. (31), we obtain

(32) g̃(hs(Z1,∇J̃Y1
Y1), J̃Z1) = −(∇J̃Y1

J̃Y1lnλ)||Z1||2.

On the other hand, from Eqs. (2), (4), (6), (11) and (13), we derive

g̃(Ds(Y1, h
l(J̃Y1, Z1)), J̃Z1) = g̃(AJ̃Z1

Y1, h
l(J̃Y1, Z1))

= −g̃(∇̃Y1
J̃Z1, h

l(J̃Y1, Z1))

= −g̃(J̃∇̃Y1
Z1, h

l(J̃Y1, Z1))

= −g̃(J̃∇Y1
Z1, h

l(J̃Y1, Z1))

= 0.(33)

Similarly, we have

(34) g̃(Ds(J̃Y1, h
l(Y1, Z1)), J̃Z1) = 0.

Further using Eqs. (27)-(28), (31)-(34) and Corollary 3.3 in Eq. (23), we get

R̃(Y1, J̃Y1, Z1, J̃Z1) = {Y1(Y1lnλ)−∇Y1
Y1lnλ+ J̃Y1(J̃Y1lnλ)}||Z1||2

−∇J̃Y1
J̃Y1lnλ||Z1||2 + (Y1lnλ)

2||Z1||2 + (J̃Y1lnλ)
2||Z1||2

− ||hs(J̃Y1, Z1)||2 − ||hs(Y1, Z1)||2.(35)

Then using Eq. (18) in Eq. (35), we obtain

R̃(Y1, J̃Y1, Z1, J̃Z1) ={H lnλ(Y1, Y1) +H lnλ(J̃Y1, J̃Y1)}||Z1||2 + (Y1lnλ)
2||Z1||2

+ (J̃Y1lnλ)
2||Z1||2 − ||hs(J̃Y1, Z1)||2 − ||hs(Y1, Z1)||2.(36)

From Eqs. (21) and (36), we attain

− c

2
||Y1||2||Z1||2 ={H lnλ(Y1, Y1) +H lnλ(J̃Y1, J̃Y1)}||Z1||2 + (Y1lnλ)

2||Z1||2

+ (J̃Y1lnλ)
2||Z1||2 − ||hs(J̃Y1, Z1)||2 − ||hs(Y1, Z1)||2.

Hence, the proof follows.
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Corollary 4.2. For a SCR-lightlike w.p. submanifold N = NT ×λ N⊥ of
Ñ(c), one has

||hs(J̃Y1, Z1)||2 + ||hs(Y1, Z1)||2 =H lnλ(Y1, Y1) +H lnλ(J̃Y1, J̃Y1) +
c

2

+ (Y1lnλ)
2 + (J̃Y1lnλ)

2,

for Y1 ∈ Γ(TNT ) and Z1 ∈ Γ(TN⊥).

Proof. Particularly, for unit vectors Y1 ∈ Γ(TNT ) and Z1 ∈ Γ(TN⊥), the
proof follows directly from Eq. (20).

Theorem 4.3. Consider N = NT ×λ N⊥ be a SCR-lightlike w.p. sub-
manifold of Ñ(c). Then

||hs(J̃Y1, Z1)||2 + ||hs(Y1, Z1)||2 =
c

2
||Y1||2||Z1||2 − (Y1lnλ)

2||Z1||2

− (J̃Y1lnλ)
2||Z1||2 − g̃(AJ̃Z1

Z1, [Y1, J̃Y1])

+ g̃(Dl(Z1, J̃Z1), [Y1, J̃Y1]),

for Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥).

Proof. For Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥), using Eq. (12), we have

(37) R̃(Y1, J̃Y1, Z1, J̃Z1) = − c

2
||Y1||2||Z1||2.

On the other hand, taking into account the Codazzi equation (7) with Eqs. (8)
and (9), for Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥), we acquire

R̃(Y1, J̃Y1, Z1, J̃Z1) =g̃(∇s
Y1
hs(J̃Y1, Z1), J̃Z1)− g̃(hs(∇Y1

J̃Y1, Z1), J̃Z1)

− g̃(hs(J̃Y1,∇Y1
Z1), J̃Z1)− g̃(∇s

J̃Y1
hs(Y1, Z1), J̃Z1)

+ g̃(hs(∇J̃Y1
Y1, Z1), J̃Z1) + g̃(hs(Y1,∇J̃Y1

Z1), J̃Z1)

+ g̃(Ds(Y1, h
l(J̃Y1, Z1)), J̃Z1)

− g̃(Ds(J̃Y1, h
l(Y1, Z1)), J̃Z1).(38)

Then from Eqs. (2), (4), (11), (13) and (16) and Lemma 3.2, we derive

g̃(∇s
Y1
hs(J̃Y1, Z1), J̃Z1) =g̃(∇̃Y1

hs(J̃Y1, Z1), J̃Z1)

=− g̃(hs(J̃Y1, Z1), ∇̃Y1 J̃Z1)

=− g̃(hs(J̃Y1, Z1), J̃∇̃Y1
Z1)

=− (Y1lnλ)
2||Z1||2 − g̃(hs(J̃Y1, Z1), J̃h

s(Y1, Z1))

=− ||hs(J̃Y1, Z1)||2.(39)

Similarly, we have

g̃(∇s
J̃Y1

hs(Y1, Z1), J̃Z1) =||hs(Y1, Z1)||2.(40)
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Further from Eq. (5), we get

g̃(hs(∇Y1
J̃Y1, Z1), J̃Z1) =g(AJ̃Z1

Z1,∇Y1
J̃Y1)− g̃(Dl(Z1, J̃Z1),∇Y1

J̃Y1).

(41)

Similarly, one has

(42) g̃(hs(∇J̃Y1
Y1, Z1), J̃Z1) = g(AJ̃Z1

Z1,∇J̃Y1
Y1)−g̃(Dl(Z1, J̃Z1),∇J̃Y1

Y1).

Further following Eqs. (2), (4), (6), (11) and (13), we attain

g̃(Ds(Y1, h
l(J̃Y1, Z1)), J̃Z1) = 0(43)

and

(44) g̃(Ds(J̃Y1, h
l(Y1, Z1)), J̃Z1) = 0.

Now employing Eqs. (39)-(44) and Corollary 3.3 in Eq. (38), we obtain

R̃(Y1, J̃Y1, Z1, J̃Z1) =− ||hs(J̃Y1, Z1)||2 − ||hs(Y1, Z1)||2 − (Y1lnλ)
2||Z1||2

+ (J̃Y1lnλ)
2||Z1||2 − g̃(AJ̃Z1

Z1, [Y1, J̃Y1])

+ g̃(Dl(Z1, J̃Z1), [Y1, J̃Y1]).(45)

Further using Eqs. (37) and (45), we derive

− c

2
||Y1||2||Z1||2 =− ||hs(J̃Y1, Z1)||2 − ||hs(Y1, Z1)||2 − (Y1lnλ)

2||Z1||2

− (J̃Y1lnλ)
2||Z1||2 − g̃(AJ̃Z1

Z1, [Y1, J̃Y1])

+ g̃(Dl(Z1, J̃Z1), [Y1, J̃Y1]).

Hence, the proof follows.

5. An optimal inequality for SCR-lightlike warped product sub-
manifolds

In this section, we establish a geometric inequality giving a lower bound for
the squared norm of the second fundamental form for a SCR-lightlike w.p.
submanifold in Ñ(c) as follows:

Theorem 5.1. Consider N = NT ×λ N⊥ be a SCR-lightlike w.p. sub-
manifold of Ñ(c). Then the second fundamental form satisfies

||h||2 ≥ 2q{∆(lnλ) + ||∇(lnλ)||2 + c

2
p},

where q is the dimension of N⊥, ∆(lnλ) is the Laplacian of lnλ and ∇(lnλ) is
the gradient of lnλ.

Proof. For Y1 ∈ Γ(D′) and Z1 ∈ Γ(D⊥), from Eq. (12), we get

(46) R̃(Y1, J̃Y1, Z1, J̃Z1) = − c

2
||Y1||2||Z1||2.
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On the other hand, using the Codazzi equation (7) with Eqs. (8) and (9), we
obtain

R̃(Y1, J̃Y1, Z1, J̃Z1) =g̃(∇s
Y1
hs(J̃Y1, Z1), J̃Z1)− g̃(hs(∇Y1 J̃Y1, Z1), J̃Z1)

− g̃(hs(J̃Y1,∇Y1
Z1), J̃Z1)− g̃(∇s

J̃Y1
hs(Y1, Z1), J̃Z1)

+ g̃(hs(∇J̃Y1
Y1, Z1), J̃Z1) + g̃(hs(Y1,∇J̃Y1

Z1), J̃Z1)

+ g̃(Ds(Y1, h
l(J̃Y1, Z1)), J̃Z1)

− g̃(Ds(J̃Y1, h
l(Y1, Z1)), J̃Z1).(47)

Since ∇̃ is a metric connection and using Eq. (4), we acquire
(48)

g̃(∇s
Y1
hs(J̃Y1, Z1), J̃Z1) = Y1g̃(h

s(J̃Y1, Z1), J̃Z1)− g̃(hs(J̃Y1, Z1), ∇̃Y1
J̃Z1).

Then employing Eqs. (13) and (14), the first term on R. H. S. of Eq. (48) takes
the form

Y1g̃(h
s(J̃Y1, Z1), J̃Z1) = Y1(Y1lnλ)||Z1||2 + 2(Y1lnλ)

2||Z1||2.(49)

Further using Eqs. (2), (11), (13) and (14), the last term on R. H. S. of Eq.
(48) becomes

g̃(hs(J̃Y1, Z1), ∇̃Y1
J̃Z1) =g̃(hs(J̃Y1, Z1), J̃∇̃Y1

Z1)

=(Y1lnλ)
2||Z1||2 + g̃(hs(J̃Y1, Z1), J̃h

s(Y1, Z1))

=||hs(J̃Y1, Z1)||2(50)

Using Eqs. (49) and (50) in Eq. (48), we derive

g̃(∇s
Y1
hs(J̃Y1, Z1), J̃Z1) ={Y1(Y1lnλ) + 2(Y1lnλ)

2}||Z1||2

− ||hs(J̃Y1, Z1)||2.(51)

Similarly, we have

g̃(∇s
J̃Y1

hs(Y1, Z1), J̃Z1) =− {J̃Y1(J̃Y1lnλ) + 2(J̃Y1lnλ)
2}||Z1||2

+ ||hs(Y1, Z1)||2.(52)

As NT is totally geodesic in N , this gives ∇J̃Y1
Y1 ∈ Γ(TNT ) for Y1 ∈ Γ(TNT )

and hence from Eq. (15), we attain

(53) g̃(hs(∇J̃Y1
Y1, Z1), J̃Z1) = −(J̃∇J̃Y1

Y1lnλ)||Z1||2.

Then using Eqs. (2), (13) and (15), we have

g̃(hs(∇Y1
J̃Y1, Z1), J̃Z1) =− (J̃∇Y1

J̃Y1lnλ)||Z1||2

=− g((J̃∇Y1
J̃Y1lnλ)Z1, Z1)

=− g(∇Z1
J̃∇Y1

J̃Y1, Z1) = −g̃(∇̃Z1
J̃∇Y1

J̃Y1, Z1)

=g̃(J̃∇Y1 J̃Y1, ∇̃Z1Z1).
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Further using Eqs. (2), (10) and (11), the above equation yields

g̃(hs(∇Y1 J̃Y1, Z1), J̃Z1) =g(J̃∇Y1 J̃Y1,∇Z1Z1) + g̃(J̃∇Y1 J̃Y1, h
l(Z1, Z1))

=g̃(J̃∇̃Y1 J̃Y1,∇Z1Z1)− g̃(J̃h(Y1, J̃Y1),∇Z1Z1)

+ g̃(J̃∇Y1
J̃Y1, h

l(Z1, Z1))

=− g̃(∇̃Y1
Y1,∇Z1

Z1)− g̃(J̃h(Y1, J̃Y1),∇Z1
Z1)

+ g̃(J̃∇Y1 J̃Y1, h
l(Z1, Z1))

=− g(∇Y1Y1,∇Z1Z1)− g̃(J̃h(Y1, J̃Y1),∇Z1Z1)

+ g̃(J̃∇Y1
J̃Y1, h

l(Z1, Z1))

=− g̃(∇Y1
Y1, ∇̃Z1

Z1) + g̃(∇Y1
Y1, h(Z1, Z1))

+ g̃(J̃∇Y1 J̃Y1, h
l(Z1, Z1))

− g̃(J̃∇̃J̃Y1
Y1 − J̃∇J̃Y1

Y1, ∇̃Z1Z1 − h(Z1, Z1)),

which further gives

g̃(hs(∇Y1
J̃Y1, Z1), J̃Z1) =g̃(∇̃Z1

∇Y1
Y1, Z1) + g̃(∇Y1

Y1, h(Z1, Z1))

− g̃(J̃∇̃J̃Y1
Y1, ∇̃Z1Z1) + g̃(J̃∇J̃Y1

Y1, ∇̃Z1Z1)

+ g̃(J̃∇̃J̃Y1
Y1, h(Z1, Z1))− g̃(J̃∇J̃Y1

Y1, h(Z1, Z1))

+ g̃(J̃∇Y1
J̃Y1, h

l(Z1, Z1))

=g(∇Z1
∇Y1

Y1, Z1)− g̃(∇̃J̃Y1
J̃Y1, ∇̃Z1

Z1)

− g̃(∇̃Z1 J̃∇J̃Y1
Y1, Z1) + g̃(∇Y1Y1, h(Z1, Z1))

+ g̃(J̃∇̃Y1 J̃Y1, h
l(Z1, Z1))

=(∇Y1
Y1lnλ)||Z1||2 − g̃(∇J̃Y1

J̃Y1, ∇̃Z1
Z1)

− g̃(∇Z1
J̃∇J̃Y1

Y1, Z1) + g̃(∇Y1
Y1, h(Z1, Z1))

− g̃(∇̃Y1Y1, h
l(Z1, Z1))

=(∇Y1
Y1lnλ)||Z1||2 + g̃(∇̃Z1

∇J̃Y1
J̃Y1, Z1)

− (J̃∇J̃Y1
Y1lnλ)||Z1||2

=(∇Y1
Y1lnλ)||Z1||2 + (∇J̃Y1

J̃Y1lnλ)||Z1||2

− (J̃∇J̃Y1
Y1lnλ)||Z1||2.(54)

Next using Eqs. (2), (4), (6), (11) and (13), we obtain

g̃(Ds(Y1, h
l(J̃Y1, Z1)), J̃Z1) = 0(55)

and

(56) g̃(Ds(J̃Y1, h
l(Y1, Z1)), J̃Z1) = 0.
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Then employing Eqs. (51)-(56) with Corollary 3.3 in Eq. (47), we derive

R̃(Y1, J̃Y1, Z1, J̃Z1) = {Y1(Y1lnλ)− (∇Y1
Y1lnλ) + J̃Y1(J̃Y1lnλ)}||Z1||2

− (∇J̃Y1
J̃Y1lnλ)||Z1||2 − ||hs(Y1, Z1)||2 − ||hs(J̃Y1, Z1)||2

+ {(Y1lnλ)
2 + (J̃Y1lnλ)

2}||Z1||2.(57)

From Eqs. (46) and (57), we get

− c

2
||Y1||2||Z1||2 = {Y1(Y1lnλ)− (∇Y1Y1lnλ) + J̃Y1(J̃Y1lnλ)}||Z1||2

− (∇J̃Y1
J̃Y1lnλ)||Z1||2 − ||hs(Y1, Z1)||2 − ||hs(J̃Y1, Z1)||2

+ {(Y1lnλ)
2 + (J̃Y1lnλ)

2}||Z1||2,
which further gives

||hs(Y1, Z1)||2 + ||hs(J̃Y1, Z1)||2 = {Y1(Y1lnλ)− (∇Y1Y1lnλ)}||Z1||2

+ {J̃Y1(J̃Y1lnλ)− (∇J̃Y1
J̃Y1lnλ)}||Z1||2

+ {(Y1lnλ)
2 + (J̃Y1lnλ)

2 +
c

2
||Y1||2}||Z1||2.(58)

Consider the local orthonormal frames of vector fields {Y1, Y2, Y3, ..., Yp, Yp+1

= J̃Y1, Yp+2 = J̃Y2, ..., Y2p = J̃Yp, Y2p+1 = ξ1, Y2p+2 = ξ2, ..., Y2p+r = ξr, Y2p+r+1 =

J̃ξ1, Y2p+r+2 = J̃ξ2, ..., Y2p+2r = J̃ξr} and {Z1, Z2, Z3, ..., Zq} on NT and N⊥
respectively. Next, choosing Y and Z as basic vector fields in Eq. (58) and
then summing both sides over i = 1, 2, ..., 2p + 2r and j = 1, 2, ..., q and using
Eq. (19), we derive

2p+2r∑
i=1

q∑
j=1

{||hs(Yi, Zj)||2 + ||hs(J̃Yi, Zj)||2} =

2p+2r∑
i=1

q∑
j=1

{ c
2
g(Yi, Yi)g(Zj , Zj)

+ {Yi(Yilnλ)−∇Yi
Yilnλ}g(Zj , Zj)

+ J̃Yi(J̃Yilnλ)g(Zj , Zj)

− (∇J̃Yi
J̃Yilnλ)g(Zj , Zj)

+ {(Yilnλ)
2 + (J̃Yilnλ)

2}g(Zj , Zj)},
which further yields

||hs(D′, D⊥)||2 =
c

2
pq + q∆(lnλ) + q||∇lnλ||2.(59)

On the other hand, the second fundamental form can be written as

(60) ||h||2 = ||h(D′, D′)||2 + ||h(D⊥, D⊥)||2 + 2||h(D′, D⊥)||2.
Then in view of degeneracy of ltr(TN), Eq. (60) yields

||h||2 = ||hs(D′, D′)||2 + ||hs(D⊥, D⊥)||2 + 2||hs(D′, D⊥)||2,
which further gives

(61) ||h||2 ≥ 2||hs(D′, D⊥)||2.
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Now using Eq. (59) in Eq. (61), we obtain

||h||2 ≥ 2q{∆(lnλ) + ||∇(lnλ)||2 + c

2
p},

which completes the proof.

6. Example

Finally, we present one non-trivial example of SCR-lightlike w.p. subman-
ifolds in Ñ .

Example 6.1. Consider N be a 5-dimensional submanifold of (R8
1, g̃) with

x1 = −u1 − u2, x2 = u1 − u2, x3 = u3, x4 = u4, x5 = u3cosu5,

x6 = u4cosu5, x7 = u3sinu5, x8 = u4sinu5,

where u5 ∈ R−{nπ
2 , n ∈ Z}. Then TN is spanned by Z1, Z2, Z3, Z4, Z5, where

Z1 = −∂x1 + ∂x2, Z2 = −∂x1 − ∂x2,

Z3 = ∂x3 + cosu5∂x5 + sinu5∂x7, Z4 = ∂x4 + cosu5∂x6 + sinu5∂x8,

Z5 = −u3sinu5∂x5 − u4sinu5∂x6 + u3cosu5∂x7 + u4cosu5∂x8.

Thus, N is a 2-lightlike submanifold with Rad(TN) = Span{Z1, Z2}. As

J̃Z3 = Z4 gives that D = Span{Z3, Z4}. Further by direct calculations,
S(TN⊥) = Span{W = u4sinu5∂x5−u3sinu5∂x6−u4cosu5∂x7+u3cosu5∂x8}
and J̃Z5 = W . On the other hand, ltr(TN) is spanned by

N1 =
1

2
(∂x1 + ∂x2), N2 =

1

2
(∂x1 − ∂x2).

Hence, D′ = Span{Z1, Z2, Z3, Z4}. Thus, N is a proper SCR-lightlike
submanifold of R8

1. Clearly D′ is integrable. We denote the leaves of D′ and
D⊥ by NT and N⊥ respectively. Then, the induced metric of N = NT ×λ N⊥
is given by

ds2 = 2(du2
3 + du2

4) + ((u3)2 + (u4)2)du2
5.

Thus, N is a proper SCR-lightlike w.p. submanifold of the type NT ×λ N⊥ in
R8

1, with λ =
√
(u3)2 + (u4)2.
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