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FOURIER SERIES OF A DEVIL’S STAIRCASE

DoYong Kwon

Abstract. Given β > 1, we consider real numbers whose β-expansions

are Sturmian words. When the slope of Sturmian words varies, their be-
haviors have been well studied from analytical point of view. The regu-
larity enables us to find the Fourier series expansion, while the singularity

at rational slopes yields a new kind of trigonometric series representing

π.

1. Introduction

For a nonempty subset A of R, we denote by χA the characteristic function
of A, i.e., χA(x) = 1 whenever x ∈ A, and χA(x) = 0 otherwise. Let us
define a real function f by f(x) := χ(0,π)(x) − χ(−π,0)(x) for x ∈ [−π, π] with
f(x + 2π) = f(x) for every x ∈ R. Then the periodic function f allows the
Fourier series expansion

f(x) =
4

π

∞∑
n=1

1

2n− 1
sin(2n− 1)x, x ∈ R.

Plugging x = π/2 into this formula, one obtains the well-known Leibniz formula
for π:

(1)
π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · .

A devil’s staircase (or a singular function) is, by definition, a real function
whose derivative vanishes almost everywhere. In the present paper, we con-
struct a devil’s staircase combining Sturmian words and β-expansions. More
precisely, this function maps the slopes of Sturmian words to real numbers
whose β-expansions are Sturmian words of the corresponding slopes. And then,
its Fourier series will be computed. While Fourier analysis on devil’s staircases
seems to be not much studied in the literature, our function narrowly escapes
the barrier against having its Fourier series. As a byproduct, the Fourier series
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gives us a new kind of trigonometric series representing π. A typical identity
yielded by this Fourier series is, for example, the following:

(2)
π

10
=

∞∑
k=1

 (−1)k−1

2k − 1

 ∑
d|2k−1

d

2d

 .

2. Preliminaries

Let ⌊·⌋ and ⌈·⌉ be the floor and ceiling functions respectively, and N the
set of nonnegative integers. For a finite alphabet A, we mean by A∗, the free
monoid generated by A. Given real α, ρ ∈ [0, 1], we define two arithmetic
functions sα,ρ, s

′
α,ρ : N → {0, 1} by

sα,ρ(n) := ⌊α(n+ 1) + ρ⌋ − ⌊αn+ ρ⌋,
s′α,ρ(n) := ⌈α(n+ 1) + ρ⌉ − ⌈αn+ ρ⌉,

to obtain infinite words

sα,ρ := sα,ρ(0)sα,ρ(1) · · · and s′α,ρ := s′α,ρ(0)s
′
α,ρ(1) · · · .

Here, the word sα,ρ (resp. s′α,ρ) is called a lower (resp. upper) mechanical
word with slope α and intercept ρ. The combinatorics on these words has been
hugely accumulated since Morse and Hedlund [7] introduced them.

When the slope α is irrational, both sα,ρ and s′α,ρ are termed Sturmian
words. If, in addition, ρ = 0, then two Sturmian words sα,0 and s′α,0 have a
common infinite suffix cα as follows:

sα,0 = 0cα, s′α,0 = 1cα,

where the common word cα is called the characteristic word of slope α.
On the other hand, the rational slope α forces both sα,0 and s′α,0 to be

purely periodic. If, say, α = p/q ∈ [0, 1] with gcd(p, q) = 1, then their shortest
periodic words are of the form 0zp,q1 and 1zp,q0, respectively for some common
finite word zp,q ∈ {0, 1}∗:

sα,0 = (0zp,q1)
∞, s′α,0 = (1zp,q0)

∞.

For a finite word w, we mean by w∞ the infinite words www · · · . The word
zp,q, called the central word, is known to be a palindrome — a word coinciding
with the reversal of itself, and its length is equal to q − 2.

Set E(0) := 1 and E(1) := 0, and extend E : {0, 1}∗ → {0, 1}∗ so that E
is a monoid homomorphism. We also write u := E(u) for a word u ∈ {0, 1}∗.
The central words possess the following type of symmetry.

Proposition 2.1. Let p/q ∈ [0, 1] be a rational number with
gcd(p, q) = 1. Then

E(zp,q) = zp,q = zq−p,q.

Proof. See [6].
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For a fixed real α ∈ [0, 1], s′α,0 is lexicographically greater than, and sα,0
smaller than any other sα,ρ and s′α,ρ [1]. The readers who want to pursue
further on mechanical words are recommended to begin with [6].

Since the introduction by Rényi [9] and Parry [8], β-expansions have been
enjoying much interests and studies from diverse fields of mathematics. Among
others, a connection between β-expansions and Sturmian words turned out to
be a fertile field. We consider the case where the β-expansions are Sturmian
words as follows.

Let us define a two-variable function Ξ : [0, 1]× (1,∞) → R by

Ξ(α, β) := (s′α,0)β :=

∞∑
n=0

s′α,0(n)

βn+1
.

Calculus and arithmetic on the function Ξ were investigated in [4], while the
level curve Ξ(α, β) = 1 curiously and naturally emerged when generalizing
classical baker’s transformations [3]. In contrast, this paper fixes β > 1, and
considers a one-variable function

fβ(x) := Ξ(x, β),

which is also a main theme of [5]. We summarize the main properties of fβ
from there.

Proposition 2.2. Let β > 1 and fβ : (0, 1] → R be defined as above. Then
the function fβ satisfies the following.

(a) fβ(x) is strictly increasing.
(b) fβ(x) is continuous at x = α if and only if α is irrational.
(c) At a rational α, fβ(x) is left-continuous but not right-continuous.
(d) If α = p/q ∈ [0, 1] with gcd(p, q) = 1, then fβ(α) = ((1zp,q0)

∞)β and the
right limit of fβ(x) at x = α is given by

fβ(α+) := lim
x→α+

fβ(x) = (1(zp,q10)
∞)β .

The case of α = 0 is understood as

fβ(0+) = (1(z0,110)
∞)β := (1(0∞))β = 1/β.

(e) fβ(x) is Riemann-integrable on [0, 1] and∫ 1

0

fβ(x) dx =
2β − 1

2β(β − 1)
.

In the next section, we compute the Fourier series expansion of fβ . The
previous proposition tells us that fβ behaves well enough that we apply Jordan’s
test for convergence of its Fourier series. This enables us to derive a new kind
of trigonometric series representing π.
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Let a function f : R → C with period 1 be in L1[0, 1], and set, for a positive
integer N ,

sNf(x) :=
a0
2

+

N∑
m=1

(am cos 2mπx+ bm sin 2mπx) ,

where

am := 2

∫ 1

0

f(x) cos 2mπxdx for m ≥ 0,

bm := 2

∫ 1

0

f(x) sin 2mπxdx for m ≥ 1.

We say that s∞f(x) := limN→∞ sNf(x) is the Fourier series of f .

Proposition 2.3 (Jordan’s test). Let a function f : R → C with period
1 be in L1[0, 1]. If there exists δ > 0 such that f is of bounded variation on
[x− δ, x+ δ], then the Fourier series of f satisfies

s∞f(x) =
f(x+) + f(x−)

2
.

In particular, if f is continuous at x, then

s∞f(x) = f(x).

Proof. See Section 10.1 of [2].

Recall that any monotone function is of bounded variation on a closed in-
terval.

3. Fourier series expansions

We compute am and bm for fβ(x). For typographical convenience’ sake, we
adopt, for n ≥ 1,

sα(n) := ⌈αn⌉ − ⌈α(n− 1)⌉ and sα := sα(1)sα(2) · · · .

In other words, sα = s′α,0. For any real t ∈ R, we mean by {t} the fractional
part of t, i.e., t = ⌊t⌋+ {t}. It is readily checked that any t ∈ R fulfills

⌈t⌉ = t+ {−t}.

Consequently, we find

sα(n) = α+ {−αn} − {−α(n− 1)},

and hence

fβ(x) =

∞∑
n=1

x+ {−nx} − {−(n− 1)x}
βn

.
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Lemma 3.1. Let m and n be positive integers. Then∫ 1

0

{−nx} cos 2mπxdx = 0

and ∫ 1

0

{−nx} sin 2mπxdx =

{
n

2mπ , if n divides m,

0, otherwise.

Proof. Let 0 ≤ k < n be an integer. If x ∈ ( kn ,
k+1
n ], then ⌊−nx⌋ = −k − 1.

One thus derives∫ (k+1)/n

k/n

{−nx} cos 2mπxdx =

∫ (k+1)/n

k/n

(−nx+ k + 1) cos 2mπxdx

= − 1

2mπ
sin

2mkπ

n
+

n

(2mπ)2

(
cos

2mkπ

n
− cos

2m(k + 1)π

n

)
,

which is followed by∫ 1

0

{−nx} cos 2mπxdx =

n−1∑
k=0

∫ (k+1)/n

k/n

{−nx} cos 2mπxdx

= − 1

2mπ

n−1∑
k=0

sin
2mkπ

n
= 0.

A similar argument shows that∫ (k+1)/n

k/n

{−nx} sin 2mπxdx

=
1

2mπ
cos

2mkπ

n
+

n

(2mπ)2

(
sin

2mkπ

n
− sin

2m(k + 1)π

n

)
and in turn that∫ 1

0

{−nx} sin 2mπxdx =
1

2mπ

n−1∑
k=0

cos
2mkπ

n
=

{
n

2mπ , if n divides m,

0, otherwise.

Now we compute the Fourier series of fβ . Let

s∞fβ(x) =
a0
2

+

∞∑
m=1

(am cos 2mπx+ bm sin 2mπx) .

Theorem 3.2. We have

s∞fβ(x) =
2β − 1

2β(β − 1)
+

∞∑
m=1

bm sin 2mπx,
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where, for m ≥ 1,

bm =
1

mπ

− 1

β − 1
+ (β − 1)

∑
n|m

n

βn+1

 .

Proof. It follows from Proposition 2.2 that

a0
2

=

∫ 1

0

fβ(x) dx =
2β − 1

2β(β − 1)
.

For m ≥ 1, Lemma 3.1 proves that

am = 2

∫ 1

0

fβ(x) cos 2mπxdx

= 2

∞∑
n=1

1

βn

(∫ 1

0

x cos 2mπxdx+

∫ 1

0

{−nx} cos 2mπxdx

−
∫ 1

0

{−(n− 1)x} cos 2mπxdx

)
= 0.

Here, the second equality rests upon the fact β > 1.
As for bm, we find

bm = 2

∫ 1

0

fβ(x) sin 2mπxdx

= 2

∞∑
n=1

1

βn

(∫ 1

0

x sin 2mπxdx+

∫ 1

0

{−nx} sin 2mπxdx

−
∫ 1

0

{−(n− 1)x} sin 2mπxdx

)

=
1

mπ

−
∞∑

n=1

1

βn
+
∑
n|m

n

βn
−

∑
n|m

n

βn+1


=

1

mπ

− 1

β − 1
+ (β − 1)

∑
n|m

n

βn+1

 .

4. Evaluations at rationals

If α ∈ (0, 1) is irrational, then Proposition 2.3 proves that

fβ(α) =
2β − 1

2β(β − 1)
+

∞∑
m=1

bm sin 2mπα,
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where bm is given as in Theorem 3.2. In this section, we evaluate s∞fβ(x) at
rational points.

Theorem 4.1. Let α = p/q ∈ (0, 1) be a rational number with gcd(p, q) =
1. Then

fβ(1− α)− fβ(α)

2
· π =

∞∑
m=1

1

m

 1

β − 1
− (β − 1)

∑
n|m

n

βn+1

 sin 2mπα.

Proof. Since fβ(x) is left-continuous, Jordan’s test together with Theorem
3.2 guarantees that

fβ(α+) + fβ(α)

2
=

2β − 1

2β(β − 1)
+

∞∑
m=1

bm sin 2mπα,

where

bm =
1

mπ

− 1

β − 1
+ (β − 1)

∑
n|m

n

βn+1

 .

By Proposition 2.2, one has

fβ(α) = ((1zp,q0)
∞)β and fβ(α+) = (1(zp,q10)

∞)β .

From
2β − 1

2β(β − 1)
=

1

2

(
1

β
+

1

β − 1

)
=

1

2
[(10∞)β + (1∞)β ] ,

and from Proposition 2.1, it follows that
∞∑

m=1

bm sin 2mπα =
fβ(α+) + fβ(α)

2
− 2β − 1

2β(β − 1)

=
1

2
[(1(zp,q10)

∞)β + ((1zp,q0)
∞)β − (10∞)β − (1∞)β ]

=
1

2
[((0zp,q1)

∞)β − ((0zp,q1)
∞)β ]

=
1

2
[((1zp,q0)

∞)β − ((1zq−p,q0)
∞)β ]

=
1

2
[fβ(α)− fβ(1− α)].

Multiplying both sides by −π, we obtain the conclusion.

If α = 1/2, then Theorem 4.1 gives us a trivial equation. For some illus-
trating examples, let us assume β = 2 from now on, that is,

f2(1− α)− f2(α)

2
· π =

∞∑
m=1

1

m

1−
∑
n|m

n

2n+1

 sin 2mπα

for any rational α ∈ (0, 1)
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Example 1. Let α = 1/4. Since we have

f2(3/4)− f2(1/4) = ((1110)∞)2 − ((1000)∞)2 = ((0110)∞)2 = 2/5,

Theorem 4.1 reads

π

5
=

∞∑
m=1

1

m

1−
∑
n|m

n

2n+1

 sin
mπ

2

=

∞∑
k=1

 (−1)k−1

2k − 1

1−
∑

n|2k−1

n

2n+1

 =
3

4
− 3

16
+

43

320
− 185

1792
+ · · · .

The above formula together with the Leibniz formula (1) provides us with the
identity (2).

Set

p(N) := 5 ·
N∑

k=1

 (−1)k−1

2k − 1

1−
∑

n|2k−1

n

2n+1

 .

With the aid of computing software such as Mathematica, we have the follow-
ing:

p(99) ≈ 3.153992836, p(100) ≈ 3.135148615,

p(999) ≈ 3.142889102, p(1000) ≈ 3.141013164.

For instance, a Mathematica code

l=Table[DivisorSum[k,#/2^(#+1)&],{k,1,2000,2}];

N[5Sum[(-1)^(k-1)/(2k-1)*(1-l[[k]]),{k,1,1000}],10]

brings forth the value 3.141013164.

Example 2. For α = 1/3, we deduce

f2(2/3)− f2(1/3) = ((110)∞)2 − ((100)∞)2 = ((010)∞)2 = 2/7,

which is followed by

π

7
=

∞∑
m=1

1

m

1−
∑
n|m

n

2n+1

 sin
2mπ

3
=

√
3

2

(
3

4
− 1

4
+

3

32
− 43

320
+ · · ·

)
.

Let q(N) be the sum of the first N nonzero terms of

7 ·
∞∑

m=1

1

m

1−
∑
n|m

n

2n+1

 sin
2mπ

3
.

Computations show that

q(99) ≈ 3.154535158, q(100) ≈ 3.124020840,

q(999) ≈ 3.143321715, q(1000) ≈ 3.140288604.
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