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e-SYMMETRIC MODULES

Hanan Abd-Elmalk

Abstract. In this paper we introduce two classes of modules namely
e-symmetric and e-reduced. Also, we study the characterizations of e-

symmetric and e-reduced modules and their related properties.

1. Introduction

Throughout this paper, R denotes an associative ring with identity, RM
is a unitary left R-module, Id (R) is the set of all idempotent elements of
R, nil (R) is the set of all nilpotent elements of R, C(R) is the center of R,
Sr(R) = {e ∈ Id (R) : e R e = eR} is the set of all right semicentral idempotent
elements of R, and ℓR(M) = {a ∈ R : aM = 0} is the left annihilator of M in
R.

According to Lambek [3], a ring R is called symmetric if whenever a, b, c ∈ R
such that abc = 0, we have bac = 0. An equivalent condition on a ring R is that
whenever a product of any number of elements is zero, any permutation of the
factors still yields vanishes product. Following [5], for an idempotent e ∈ R, a
ring R is called e-symmetric if whenever a, b, c ∈ R such that abc = 0, we have
acbe = 0. Recall from [3] and [6] that a left R-module RM is called symmetric
if whenever a, b ∈ R and m ∈ M such that abm = 0 implies bam = 0.

Recall that a ring R is reduced if it has no nonzero nilpotent elements. In
2004, the reduced ring concept was extended to modules by Lee and Zhou [4]
as follows: a left R-module RM is reduced if, for any m ∈ M and any a ∈ R,
am = 0 implies Rm ∩ aM = 0.

This paper is organized as follows. In Section 2, we first define RM to
be e-symmetric, where e ∈ Id(R), if whenever a, b ∈ R and m ∈ M such
that abm = 0 implies ebam = 0. We discuss many properties of e-symmetric
modules. In Sections 3 and 4, we investigate the behavior of e-symmetric
modules with respect to matrix and polynomial extensions, respectively. In
Section 5, we define RM to be e-reduced, where e ∈ Id(R), if whenever a ∈ R
and m ∈ M such that a2m = 0 implies eaRm = 0. We show that every
e-reduced module is e-symmetric for any right semicentral idempotent e in R.
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2. Modules with e-symmetric condition

In this section, we extend the notion of e-symmetric rings to modules as
follows:

Definition 2.1. A left R-module RM is called e-symmetric, where e ∈
Id(R), if whenever a, b ∈ R and m ∈ M such that abm = 0 implies ebam = 0.

Obviously, R is a left e-symmetric ring if and only if RR is an e-symmetric
module.

Clearly, any symmetric module is an e-symmetric module for any e ∈ Id(R).
In the following example we show that the class of e-symmetric modules is
properly contains the class of symmetric modules.

Example 2.2. Let S be a symmetric ring, R =

(
S S
0 S

)
and M =(

0 S
0 S

)
a left R-module. Consider the following elements a =

(
1 1
0 1

)
,

b =

(
1 0
0 0

)
∈ R and m =

(
0 0
0 1

)
∈ M. By direct computations we get

that abm = 0 and bam ̸= 0. So RM is not a symmetric left R-module. Consider

the idempotent e =

(
0 0
0 1

)
∈ R, we show that RM is an e-symmetric left

R-module. Let a =

(
x y
0 z

)
, b =

(
t u
0 v

)
∈ R and m =

(
0 α
0 β

)
∈ M

such that abm = 0. Hence

0 = zvβ, and

0 = xtα+ xuβ + yvβ.

Thus

ebam =

(
0 0
0 vzβ

)
= 0.

Proposition 2.3. The class of e-symmetric modules is closed under sub-
modules, direct products and so direct sums.

Proof. The proof is straightforward depending on the definitions and alge-
braic structures.

Recall that a module RM is called cogenerated by R if it is embedded in a
direct product of copies of R, and RM is called faithful if ℓR(M) = (0). The
following Proposition is a direct result of definitions and Proposition 2.3.

Proposition 2.4. The following conditions are equivalent for a ring R :
(1) R is an e-symmetric ring.
(2) Every cogenerated left R-module, by R, is an e-symmetric module.
(3) Every submodule of a free R-module is an e-symmetric module.
(4) There exists a faithful e-symmetric R-module.
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Proposition 2.5. Let R,S be rings, e ∈ Id(R) and φ : R → S be a ring
homomorphism. If SM is a left S-module, then M is a left R-module via
rm = φ(r)m for all r ∈ R and m ∈ M. Then we get:
(1) If SM is a φ(e)-symmetric module, then RM is an e-symmetric module.
(2) If φ is onto and RM is an e-symmetric module, then SM is a φ(e)-symmetric
module.

Proof. (1) Suppose that SM is a φ(e)-symmetric module. Let a, b ∈ R and
m ∈ M such that abm = 0. Then φ(ab)m = φ(a)φ(b)m = 0. Since SM is
φ(e)-symmetric, we have φ(e)φ(b)φ(a)m = 0. So φ(eba)m = 0, which in turn
implies ebam = 0. Hence RM is an e-symmetric module.
(2) Suppose that φ is onto and RM is an e-symmetric module. Let x, y ∈ S
and m ∈ M such that xym = 0. Since φ is onto, there exist a, b ∈ R such that
x = φ(a) and y = φ(b). Then φ(a)φ(b)m = φ(ab)m = abm = 0. Since RM is
e-symmetric, implies ebam = 0. Hence φ(eba)m = φ(e)φ(b)φ(a)m = 0, and so
φ(e)yxm = 0. Thus SM is a φ(e)-symmetric module.

Theorem 2.6. Let R be a ring, e ∈ Sr(R) and RM is a left R-module.
Then RM is an e-symmetric module if and only if eRM is a symmetric module.

Proof. “ =⇒”Assume that RM is an e-symmetric module. Let a, b ∈ eR
and m ∈ M such that abm = 0. Since a, b ∈ eR, there exist x, y ∈ R such
that a = ex and b = ey. So we get (ex) (ey)m = 0 in RM which implies that
e (ey) (ex)m = (ey) (ex)m = bam = 0. Hence eRM is a symmetric module.
“ ⇐=”Assume that eRM is a symmetric module. Let a, b ∈ R and m ∈ M such
that abm = 0 which implies that eabm = 0. Since e ∈ Sr(R), we get (eae) bm =
0 and then (ea) (eb)m = 0 in eRM. Hence (eb) (ea)m = (ebe) am = ebam = 0.
Thus RM is an e-symmetric module.

Corollary 2.7. Let R be a ring, e ∈ C(R) and RM a left R-module. If

eRM and (1−e)RM are symmetric modules, then RM is a symmetric module.

Proof. We can easily check that e ∈ C(R) if and only if (1−e) ∈ C(R). From
Theorem 2.6, we conclude that RM is both e-symmetric and (1−e)-symmetric.
Let a, b ∈ R and m ∈ M such that abm = 0 which implies that ebam = 0 and
(1− e) bam = 0. Therefore bam = 0. Thus RM is a symmetric module.

Proposition 2.8. Let R be a ring, e ∈ Id(R) and RM a left R-module. If

RM is an e-symmetric module, then R = R /ℓR(M) is an e-symmetric ring.

Proof. Let a, b, c ∈ R, such that abc = 0. So abc = 0. Hence abc ∈ ℓR(M),
and so we have abcm = 0 for every m ∈ M. Since RM is e-symmetric, we get
ebacm = 0 for every m ∈ M. Hence ebac ∈ ℓR(M) and so 0 = ebac = e b a c.
Therefore R is an e-symmetric ring.
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3. Matrix extensions

In this section we characterize left e-symmetric 2-by-2 generalized upper
triangular matrix rings. Moreover, as a corollary we obtain that a ring R is a
left e-symmetric ring if and only if Tn(R) is left E-symmetric for all positive
integers n.

Theorem 3.1. Let T =

(
R M
0 S

)
where R and S are rings, and RMS

an (R,S)-bimodule. If T is a left

(
e k
0 g

)
-symmetric ring, with

(
e k
0 g

)
∈

Id(T ), then:
(1) R is a left e-symmetric ring,
(2) S is a left g-symmetric ring, and
(3) RM is a left e-symmetric R-module.

Proof. Assume that T is a left

(
e k
0 g

)
-symmetric ring, where

(
e k
0 g

)
∈

Id(T ). Then by easy computations, we can check that e ∈ Id(R), g ∈ Id(S) and
ek + kg = k.
(1) Assume that abc = 0 for a, b, c ∈ R. Consider the following elements(

a 0
0 0

)
,

(
b 0
0 0

)
,

(
c 0
0 0

)
∈ T.

We have

0 =

(
a 0
0 0

)(
b 0
0 0

)(
c 0
0 0

)
.

Since T is a left

(
e k
0 g

)
-symmetric ring, we get

0 =

(
e k
0 g

)(
b 0
0 0

)(
a 0
0 0

)(
c 0
0 0

)
.

Hence 0 = ebac in R. Therefore R is a left e-symmetric ring.
(2) Assume that αβγ = 0, for α, β, γ ∈ S. Consider the following elements(

0 0
0 α

)
,

(
0 0
0 β

)
,

(
0 0
0 γ

)
∈ T.

We have

0 =

(
0 0
0 α

)(
0 0
0 β

)(
0 0
0 γ

)
.

Since T is a left

(
e k
0 g

)
-symmetric ring, we get

0 =

(
e k
0 g

)(
0 0
0 β

)(
0 0
0 α

)(
0 0
0 γ

)
.
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Hence gβαγ = 0 in S. Therefore S is a left g-symmetric ring.
(3) Let a, b ∈ R andm ∈ M such that abm = 0. Consider the following elements(

a 0
0 0

)
,

(
b 0
0 0

)
,

(
0 m
0 0

)
∈ T.

We have

0 =

(
a 0
0 0

)(
b 0
0 0

)(
0 m
0 0

)
.

Since T is a left

(
e k
0 g

)
-symmetric ring, we get

0 =

(
e k
0 g

)(
b 0
0 0

)(
a 0
0 0

)(
0 m
0 0

)
.

Hence ebam = 0 in RM. Therefore RM is a left e-symmetric R-module.

Theorem 3.2. Let T =

(
R M
0 S

)
where R and S are rings, and RMS

an (R,S)-bimodule. If S is a left g-symmetric ring, where g ∈ Id(S), then T is

a left

(
0 0
0 g

)
-symmetric ring.

Proof. Assume that S is a left g-symmetric ring, where g ∈ Id(S). Consider
the following elements(

a m
0 b

)
,

(
q n
0 p

)
,

(
u t
0 v

)
∈ T

such that

0 =

(
a m
0 b

)(
q n
0 p

)(
u t
0 v

)
.

Thus

0 =

(
aqu aqt+ anv +mpv
0 bpv

)
.

Hence 0 = bpv in S. Since S is a left g-symmetric ring, we have gpbv = 0.
Thus (

0 0
0 g

)(
q n
0 p

)(
a m
0 b

)(
u t
0 v

)
= 0.

Therefore T is a left

(
0 0
0 g

)
-symmetric ring.

Corollary 3.3. Let Tn(R) be the n-by-n upper triangular matrix ring over
a ring R, where n ≥ 1. Then the following are equivalent:
(1) R is a left e-symmetric ring, where e ∈ Id(R).

(2) T2(R) =

(
R R
0 R

)
is a left

(
0 0
0 e

)
-symmetric ring.
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(3) Tn(R) is a left


0 0 ... 0
0 0 ... 0
...

...
. . .

...
0 0 ... e

-symmetric ring for every positive integer

n.

Proof. “(3) =⇒ (1)” follows directly from the fact that T1(R) ∼= R.
“(1) =⇒ (2)” is clear from Theorem 3.2.

“(2) =⇒ (3)” Note that Tn+1(R) ∼=
(

R M
0 Tn(R)

)
where M is the 1-by-n row

matrix with R in every entry and 0 is the n-by-1 column zero matrix. So this
implication is proved by using induction on n.

4. Polynomial extensions

Recall the following extensions of a left R-module RM :

M [x] =

{
φ(x) =

n∑
i=0

mix
i : mi ∈ M

}
.

M [x] is a left R [x]-module and R[x]M [x] is called the usual polynomial exten-
sion of RM.

M [x, x−1] =

{
φ(x) =

n∑
i=−k

mix
i : mi ∈ M

}
.

M [x, x−1] is a left R[x, x−1]-module and R[x,x−1]M [x, x−1] is called the usual
Laurent polynomial extension of RM.

From ([2], Example 2.1.), we conclude that, in general, the polynomial rings
over symmetric rings not be symmetric.

This motivated us to study the conditions under which the polynomial ex-
tensions of a left R-module RM be e-symmetric, for some e ∈ Id(R).

We mean by a regular element of a ring R, a nonzero element which is not
a zero divisor.

Theorem 4.1. Let R be a ring, ∆ be a multiplicatively closed subset of
R consisting of central regular elements, 1 ∈ ∆ and e ∈ Id(R). Then RM is
e-symmetric if and only if (∆−1R)

(
∆−1M

)
is

(
1−1e

)
-symmetric.

Proof. Suppose that RM is e-symmetric. Let a, b ∈ R, m ∈ M and
u, v, w ∈ ∆ such that

(
u−1a

) (
v−1b

) (
w−1m

)
= 0 in (∆−1R)

(
∆−1M

)
. Since

∆ is contained in the center of R, we have

0 =
(
u−1v−1w−1

)
(abm) = (uvw)

−1
(abm) ,
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and so abm = 0. Therefore ebam = 0, since RM is e-symmetric. So, in

(∆−1R)

(
∆−1M

)
, we have 0 = (1vuw)

−1
(ebam) =

(
1−1v−1u−1w−1

)
(ebam) .

Thus (
1−1e

) (
v−1b

) (
u−1a

) (
w−1m

)
= 0.

Hence (∆−1R)

(
∆−1M

)
is

(
1−1e

)
-symmetric.

It is clear that if (∆−1R)

(
∆−1M

)
is
(
1−1e

)
-symmetric, then RM is e-symmetric.

Corollary 4.2. Let R be a ring and e ∈ Id(R). Then R[x]M [x] is e-

symmetric if and only if R[x,x−1]M [x, x−1] is e-symmetric.

Proof. Consider the multiplicatively closed set ∆ =
{
1, x, x2, x3, ...

}
which

is clearly a subset of R[x] consisting of regular elements. Since ∆−1R [x] =
R[x, x−1] and ∆−1M [x] = M [x, x−1], the result follows directly from Theorem
4.1.

Following, Anderson and Camillo [1], extended the concept of Armendariz
ring to Armendariz module, as follows: A left R-module RM is called Armen-

dariz if whenever m (x) =
n∑

i=0

mix
i ∈ M [x] and g (x) =

p∑
j=0

ajx
j ∈ R [x] such

that g (x)m (x) = 0 implies ajmi = 0 for all i and j. The Armendariz property
holds for any finite product of polynomials. Clearly, R is an Armendariz ring
if and only if RR is an Armendariz R-module.

Theorem 4.3. Let R be a ring, e ∈ Id(R) and RM a left Armendariz R-
module. RM is an e-symmetric module if and only if R[x]M [x] is e-symmetric

if and only if R[x,x−1]M [x, x−1] is e-symmetric.

Proof. Assume that RM is e-symmetric. Let m (x) =
n∑

i=0

mix
i ∈ M [x] and

f (x) =
p∑

j=0

ajx
j , g(x) =

q∑
k=0

bkx
k ∈ R [x] such that f (x) g (x)m (x) = 0. Since

RM is a left Armendariz R-module, we have ajbkmi = 0 for all i, j and k.
Since RM is e-symmetric, we get ebkajmi = 0 for all i, j and k. Thus we have
eg (x) f (x)m (x) = 0. Therefore R[x]M [x] is e-symmetric. Now the required
equivalence is clear from Corollary 4.2.

5. e-reduced modules

In this section we introduce the notion of e-reduced modules.

Definition 5.1. A left R-module RM is called e-reduced, where e ∈ Id(R),
if whenever a ∈ R and m ∈ M such that am = 0 implies Rm ∩ eaM = 0.
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Proposition 5.2. The following conditions are equivalent for a left R-
module RM :
(1) RM is an e-reduced module.
(2) The following two conditions hold:
(i) Whenever a ∈ R and m ∈ M such that am = 0 implies eaRm = 0,
(ii) Whenever a ∈ R and m ∈ M such that a2m = 0 implies eam = 0.
(3) Whenever a ∈ R and m ∈ M such that a2m = 0 implies eaRm = 0.

Proof. “(1) ⇒ (2)” Let RM be an e-reduced module.
(i) Assume that a ∈ R and m ∈ M such that am = 0. From the given, we have
Rm ∩ eaM = 0. It is easily to check that

eaRm ⊂ Rm and eaRm ⊂ eaM.

Therefore eaRm ⊂ Rm ∩ eaM = 0. Thus eaRm = 0.
(ii) Assume that a ∈ R and m ∈ M such that a2m = 0. So, we have

0 = e
(
a2m

)
= ea (am) ; ea ∈ R and am ∈ M.

Therefore R (am)∩(ea)M = 0. But eam ∈ R (am)∩(ea)M = 0. Thus eam = 0.
“(2) ⇒ (1)” Assume that a ∈ R and m ∈ M such that am = 0. We show that
Rm∩ eaM = 0. Let x ∈ Rm∩ eaM, so there exist r ∈ R and n ∈ M such that
x = rm and x = ean. Since am = 0, we conclude, from (2-i), that earm = 0.

Thus 0 = eax = ea (ean) = (ea)
2
n. By using (2-ii), we get 0 = ean = x.

Therefore Rm ∩ eaM = 0. Hence RM is an e-reduced module.
“(2) ⇒ (3)” Assume that a ∈ R and m ∈ M such that a2m = 0. By using
(2-ii), we get 0 = eam. We conclude, from (2-i), that 0 = e (ea)Rm = eaRm.
“(3) ⇒ (2)” (i) Assume that a ∈ R and m ∈ M such that am = 0. Hence
a2m = 0 which implies 0 = eaRm.
(ii) Assume that a ∈ R and m ∈ M such that a2m = 0. Hence 0 = eaRm.
Therefore eam = 0.

A ring R is e-reduced if and only if RR is an e-reduced module. Any reduced
left R-module is e-reduced for any nontrivial idempotent e in R.

Lemma 5.3. The class of e-reduced modules is closed under submodules,
direct products and so direct sums.

Proof. The proof is straightforward depending on the definitions and alge-
braic structures.

Example 5.4. Consider the ring of integers modulo 12, R = Z12, as a
module over itself, then by direct computations, we can conclude that:

nil(R) = {0, 6} ̸= 0 and Id(R) = {0, 1, 4, 9} .
R is a 4-reduced ring which is not a reduced ring. Therefore RR is a 4-reduced
module.

Recall from [4] that, a leftR-module is called a p.p.-module if for anym ∈ M,
ℓR(m) = gR where g ∈ Id(R).
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Proposition 5.5. Let R be a ring, RM a left R-module and e ∈ Id(R). If

RM is a p.p.-module, then RM is an e-reduced module.

Proof. Assume that a ∈ R and m ∈ M such that am = 0. If x ∈ Rm∩eaM,
then x = rm = eak; where r ∈ R, k ∈ M. Since RM is p.p. and am = 0,
we have ea ∈ ℓR(m) = gR and so ea = gy with g ∈ Id(R), y ∈ R. Therefore
gea = ea. Then x = eak = geak = gx = grm = 0. Thus Rm∩ eaM = 0. Hence

RM is e-reduced.

Proposition 5.6. Let R be a ring and RM a left R-module. If e ∈ Sr(R)
and RM is an e-reduced module, then RM is an e-symmetric module.

Proof. Assume that a, b ∈ R and m ∈ M such that abm = 0. So, we have
(babb) (ab)m = 0, which implies that (bab)

2
m = 0. Since RM is e-reduced,

ebabRm = 0. Since e ∈ Sr(R), we have ebeaebRm = 0. Then (ebea)
2
m = 0.

Since RM is e-reduced and e ∈ Sr(R), we get ebam = 0. Therefore RM is
e-symmetric.
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