Honam Mathematical J. 43 (2021), No. 2, pp. 199–207 https://doi.org/10.5831/HMJ.2021.43.2.199

e-SYMMETRIC MODULES

HANAN ABD-ELMALK

Abstract. In this paper we introduce two classes of modules namely *e*-symmetric and *e*-reduced. Also, we study the characterizations of *e*-symmetric and *e*-reduced modules and their related properties.

1. Introduction

Throughout this paper, R denotes an associative ring with identity, $_RM$ is a unitary left R-module, $\mathrm{Id}(R)$ is the set of all idempotent elements of R, $\mathrm{nil}(R)$ is the set of all nilpotent elements of R, $\mathrm{C}(R)$ is the center of R, $\mathrm{S}_{\mathrm{r}}(R) = \{e \in \mathrm{Id}(R) : e \ R \ e = eR\}$ is the set of all right semicentral idempotent elements of R, and $\ell_R(M) = \{a \in R : aM = 0\}$ is the left annihilator of M in R.

According to Lambek [3], a ring R is called *symmetric* if whenever $a, b, c \in R$ such that abc = 0, we have bac = 0. An equivalent condition on a ring R is that whenever a product of any number of elements is zero, any permutation of the factors still yields vanishes product. Following [5], for an idempotent $e \in R$, a ring R is called *e-symmetric* if whenever $a, b, c \in R$ such that abc = 0, we have acbe = 0. Recall from [3] and [6] that a left R-module $_RM$ is called *symmetric* if whenever $a, b \in R$ and $m \in M$ such that abm = 0 implies bam = 0.

Recall that a ring R is *reduced* if it has no nonzero nilpotent elements. In 2004, the reduced ring concept was extended to modules by Lee and Zhou [4] as follows: a left R-module $_RM$ is reduced if, for any $m \in M$ and any $a \in R$, am = 0 implies $Rm \cap aM = 0$.

This paper is organized as follows. In Section 2, we first define $_RM$ to be *e*-symmetric, where $e \in \mathrm{Id}(R)$, if whenever $a, b \in R$ and $m \in M$ such that abm = 0 implies ebam = 0. We discuss many properties of *e*-symmetric modules. In Sections 3 and 4, we investigate the behavior of *e*-symmetric modules with respect to matrix and polynomial extensions, respectively. In Section 5, we define $_RM$ to be *e*-reduced, where $e \in \mathrm{Id}(R)$, if whenever $a \in R$ and $m \in M$ such that $a^2m = 0$ implies eaRm = 0. We show that every *e*-reduced module is *e*-symmetric for any right semicentral idempotent *e* in *R*.

Received November 21, 2020. Revised January 5, 2021. Accepted January 12, 2021.

²⁰²⁰ Mathematics Subject Classification. 06F05, 16W60, 16D25, 16P60.

Key words and phrases. reduced ring, symmetric ring, e-reduced ring, e-symmetric ring.

Hanan Abd-Elmalk

2. Modules with *e*-symmetric condition

In this section, we extend the notion of e-symmetric rings to modules as follows:

Definition 2.1. A left *R*-module $_RM$ is called *e*-symmetric, where $e \in Id(R)$, if whenever $a, b \in R$ and $m \in M$ such that abm = 0 implies ebam = 0.

Obviously, R is a left *e*-symmetric ring if and only if $_RR$ is an *e*-symmetric module.

Clearly, any symmetric module is an *e*-symmetric module for any $e \in Id(R)$. In the following example we show that the class of *e*-symmetric modules is properly contains the class of symmetric modules.

Example 2.2. Let *S* be a symmetric ring, $R = \begin{pmatrix} S & S \\ 0 & S \end{pmatrix}$ and $M = \begin{pmatrix} 0 & S \\ 0 & S \end{pmatrix}$ a left *R*-module. Consider the following elements $a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in R$ and $m = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in M$. By direct computations we get that abm = 0 and $bam \neq 0$. So $_{R}M$ is not a symmetric left *R*-module. Consider the idempotent $e = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in R$, we show that $_{R}M$ is an *e*-symmetric left *R*-module. Let $a = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix}$, $b = \begin{pmatrix} t & u \\ 0 & v \end{pmatrix} \in R$ and $m = \begin{pmatrix} 0 & \alpha \\ 0 & \beta \end{pmatrix} \in M$ such that abm = 0. Hence

$$0 = zv\beta, \text{ and} \\ 0 = xt\alpha + xu\beta + yv\beta$$

Thus

$$ebam = \left(\begin{array}{cc} 0 & 0\\ 0 & vz\beta \end{array}\right) = 0.$$

Proposition 2.3. The class of *e*-symmetric modules is closed under submodules, direct products and so direct sums.

Proof. The proof is straightforward depending on the definitions and algebraic structures. $\hfill \square$

Recall that a module $_RM$ is called *cogenerated* by R if it is embedded in a direct product of copies of R, and $_RM$ is called *faithful* if $\ell_R(M) = (0)$. The following Proposition is a direct result of definitions and Proposition 2.3.

Proposition 2.4. The following conditions are equivalent for a ring R: (1) R is an e-symmetric ring.

(2) Every cogenerated left R-module, by R, is an e-symmetric module.

(3) Every submodule of a free *R*-module is an *e*-symmetric module.

(4) There exists a faithful e-symmetric R-module.

Proposition 2.5. Let R, S be rings, $e \in Id(R)$ and $\varphi : R \to S$ be a ring homomorphism. If $_SM$ is a left S-module, then M is a left R-module via $rm = \varphi(r)m$ for all $r \in R$ and $m \in M$. Then we get:

(1) If $_{S}M$ is a $\varphi(e)$ -symmetric module, then $_{R}M$ is an e-symmetric module.

(2) If φ is onto and $_RM$ is an e-symmetric module, then $_SM$ is a $\varphi(e)$ -symmetric module.

Proof. (1) Suppose that ${}_{S}M$ is a $\varphi(e)$ -symmetric module. Let $a, b \in R$ and $m \in M$ such that abm = 0. Then $\varphi(ab)m = \varphi(a)\varphi(b)m = 0$. Since ${}_{S}M$ is $\varphi(e)$ -symmetric, we have $\varphi(e)\varphi(b)\varphi(a)m = 0$. So $\varphi(eba)m = 0$, which in turn implies ebam = 0. Hence ${}_{R}M$ is an e-symmetric module.

(2) Suppose that φ is onto and $_RM$ is an *e*-symmetric module. Let $x, y \in S$ and $m \in M$ such that xym = 0. Since φ is onto, there exist $a, b \in R$ such that $x = \varphi(a)$ and $y = \varphi(b)$. Then $\varphi(a)\varphi(b)m = \varphi(ab)m = abm = 0$. Since $_RM$ is *e*-symmetric, implies ebam = 0. Hence $\varphi(eba)m = \varphi(e)\varphi(b)\varphi(a)m = 0$, and so $\varphi(e)yxm = 0$. Thus $_SM$ is a $\varphi(e)$ -symmetric module. \Box

Theorem 2.6. Let R be a ring, $e \in S_r(R)$ and $_RM$ is a left R-module. Then $_RM$ is an e-symmetric module if and only if $_{eR}M$ is a symmetric module.

Proof. " \Longrightarrow " Assume that $_RM$ is an *e*-symmetric module. Let $a, b \in eR$ and $m \in M$ such that abm = 0. Since $a, b \in eR$, there exist $x, y \in R$ such that a = ex and b = ey. So we get (ex)(ey)m = 0 in $_RM$ which implies that e(ey)(ex)m = (ey)(ex)m = bam = 0. Hence $_{eR}M$ is a symmetric module.

" \Leftarrow " Assume that $_{eR}M$ is a symmetric module. Let $a, b \in R$ and $m \in M$ such that abm = 0 which implies that eabm = 0. Since $e \in S_r(R)$, we get (eae) bm = 0 and then (ea) (eb) m = 0 in $_{eR}M$. Hence (eb) (ea) m = (ebe) am = ebam = 0. Thus $_{R}M$ is an e-symmetric module.

Corollary 2.7. Let R be a ring, $e \in C(R)$ and $_RM$ a left R-module. If $_{eR}M$ and $_{(1-e)R}M$ are symmetric modules, then $_RM$ is a symmetric module.

Proof. We can easily check that $e \in C(R)$ if and only if $(1-e) \in C(R)$. From Theorem 2.6, we conclude that $_RM$ is both *e*-symmetric and (1-e)-symmetric. Let $a, b \in R$ and $m \in M$ such that abm = 0 which implies that ebam = 0 and (1-e) bam = 0. Therefore bam = 0. Thus $_RM$ is a symmetric module. \Box

Proposition 2.8. Let R be a ring, $e \in Id(R)$ and $_RM$ a left R-module. If $_RM$ is an e-symmetric module, then $\overline{R} = R / \ell_R(M)$ is an \overline{e} -symmetric ring.

Proof. Let $\overline{a}, \overline{b}, \overline{c} \in \overline{R}$, such that $\overline{a}\overline{b}\overline{c} = \overline{0}$. So $\overline{abc} = \overline{0}$. Hence $abc \in \ell_R(M)$, and so we have abcm = 0 for every $m \in M$. Since $_RM$ is *e*-symmetric, we get ebacm = 0 for every $m \in M$. Hence $ebac \in \ell_R(M)$ and so $\overline{0} = \overline{ebac} = \overline{e} \ \overline{b} \ \overline{a} \ \overline{c}$. Therefore \overline{R} is an \overline{e} -symmetric ring.

3. Matrix extensions

In this section we characterize left e-symmetric 2-by-2 generalized upper triangular matrix rings. Moreover, as a corollary we obtain that a ring R is a left e-symmetric ring if and only if $T_n(R)$ is left E-symmetric for all positive integers n.

Theorem 3.1. Let $T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ where R and S are rings, and $_RM_S$ an (R, S)-bimodule. If T is a left $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix}$ -symmetric ring, with $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix} \in \mathrm{Id}(T)$, then:

(1) D is a left a set

(1) R is a left e-symmetric ring,

(2) S is a left g-symmetric ring, and (3) $_{R}M$ is a left e-symmetric R-module.

Proof. Assume that T is a left $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix}$ -symmetric ring, where $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix} \in Id(T)$. Then by easy computations, we can check that $e \in Id(R), g \in Id(S)$ and ek + kg = k.

(1) Assume that abc = 0 for $a, b, c \in R$. Consider the following elements

$$\left(\begin{array}{cc}a&0\\0&0\end{array}\right), \left(\begin{array}{cc}b&0\\0&0\end{array}\right), \left(\begin{array}{cc}c&0\\0&0\end{array}\right) \in T.$$

We have

$$0 = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c & 0 \\ 0 & 0 \end{pmatrix}.$$

Since T is a left $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix}$ -symmetric ring, we get

$$0 = \left(\begin{array}{cc} e & k \\ 0 & g \end{array}\right) \left(\begin{array}{cc} b & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} c & 0 \\ 0 & 0 \end{array}\right).$$

Hence 0 = ebac in R. Therefore R is a left *e*-symmetric ring. (2) Assume that $\alpha\beta\gamma = 0$, for $\alpha, \beta, \gamma \in S$. Consider the following elements

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & \alpha \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & \beta \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & \gamma \end{array}\right) \in T.$$

We have

$$0 = \begin{pmatrix} 0 & 0 \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \beta \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \gamma \end{pmatrix}.$$

Since T is a left $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix}$ -symmetric ring, we get

$$0 = \begin{pmatrix} e & k \\ 0 & g \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \beta \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \gamma \end{pmatrix}.$$

Hence $g\beta\alpha\gamma = 0$ in S. Therefore S is a left g-symmetric ring. (3) Let $a, b \in R$ and $m \in M$ such that abm = 0. Consider the following elements

$$\left(\begin{array}{cc}a&0\\0&0\end{array}\right), \left(\begin{array}{cc}b&0\\0&0\end{array}\right), \left(\begin{array}{cc}0&m\\0&0\end{array}\right) \in T.$$

We have

$$0 = \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} b & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & m \\ 0 & 0 \end{array}\right).$$

Since T is a left $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix}$ -symmetric ring, we get

$$0 = \left(\begin{array}{cc} e & k \\ 0 & g \end{array}\right) \left(\begin{array}{cc} b & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & m \\ 0 & 0 \end{array}\right).$$

Hence ebam = 0 in $_RM$. Therefore $_RM$ is a left *e*-symmetric *R*-module.

Theorem 3.2. Let $T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ where R and S are rings, and $_RM_S$ an (R,S)-bimodule. If S is a left g-symmetric ring, where $g \in \mathrm{Id}(S)$, then T is a left $\begin{pmatrix} 0 & 0 \\ 0 & g \end{pmatrix}$ -symmetric ring.

Proof. Assume that S is a left g-symmetric ring, where $g \in Id(S)$. Consider the following elements

$$\left(\begin{array}{cc}a&m\\0&b\end{array}\right), \left(\begin{array}{cc}q&n\\0&p\end{array}\right), \left(\begin{array}{cc}u&t\\0&v\end{array}\right) \in T$$

such that

$$0 = \left(\begin{array}{cc} a & m \\ 0 & b \end{array}\right) \left(\begin{array}{cc} q & n \\ 0 & p \end{array}\right) \left(\begin{array}{cc} u & t \\ 0 & v \end{array}\right).$$

Thus

$$0 = \left(\begin{array}{cc} aqu & aqt + anv + mpv \\ 0 & bpv \end{array}\right).$$

Hence 0 = bpv in S. Since S is a left g-symmetric ring, we have gpbv = 0. Thus

$$\begin{pmatrix} 0 & 0 \\ 0 & g \end{pmatrix} \begin{pmatrix} q & n \\ 0 & p \end{pmatrix} \begin{pmatrix} a & m \\ 0 & b \end{pmatrix} \begin{pmatrix} u & t \\ 0 & v \end{pmatrix} = 0.$$

Therefore T is a left $\begin{pmatrix} 0 & 0 \\ 0 & g \end{pmatrix}$ -symmetric ring.

Corollary 3.3. Let $T_n(R)$ be the *n*-by-*n* upper triangular matrix ring over a ring R, where $n \ge 1$. Then the following are equivalent: (1) R is a left *e*-symmetric ring, where $e \in Id(R)$.

(2)
$$T_2(R) = \begin{pmatrix} R & R \\ 0 & R \end{pmatrix}$$
 is a left $\begin{pmatrix} 0 & 0 \\ 0 & e \end{pmatrix}$ -symmetric ring.

Hanan Abd-Elmalk

(3)
$$T_n(R)$$
 is a left $\begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e \end{pmatrix}$ -symmetric ring for every positive integer

n.

Proof. "(3) \implies (1)" follows directly from the fact that $T_1(R) \cong R$. "(1) \implies (2)" is clear from Theorem 3.2. "(2) \implies (3)" Note that $T_{n+1}(R) \cong \begin{pmatrix} R & M \\ 0 & T_n(R) \end{pmatrix}$ where M is the 1-by-n row matrix with R in every entry and 0 is the n-by-1 column zero matrix. So this implication is proved by using induction on n.

4. Polynomial extensions

Recall the following extensions of a left R-module $_RM$:

$$M[x] = \left\{ \varphi(x) = \sum_{i=0}^{n} m_i x^i : m_i \in M \right\}.$$

M[x] is a left R[x]-module and R[x]M[x] is called the usual polynomial extension of $_RM$.

$$M[x, x^{-1}] = \left\{ \varphi(x) = \sum_{i=-k}^{n} m_i x^i : m_i \in M \right\}.$$

 $M[x,x^{-1}]$ is a left $R[x,x^{-1}]\text{-module}$ and $_{R[x,x^{-1}]}M[x,x^{-1}]$ is called the usual Laurent polynomial extension of $_{R}M$.

From ([2], Example 2.1.), we conclude that, in general, the polynomial rings over symmetric rings not be symmetric.

This motivated us to study the conditions under which the polynomial extensions of a left *R*-module $_RM$ be *e*-symmetric, for some $e \in Id(R)$.

We mean by a regular element of a ring R, a nonzero element which is not a zero divisor.

Theorem 4.1. Let R be a ring, Δ be a multiplicatively closed subset of R consisting of central regular elements, $1 \in \Delta$ and $e \in Id(R)$. Then _RM is e-symmetric if and only if $(\Delta^{-1}R)$ ($\Delta^{-1}M$) is $(1^{-1}e)$ -symmetric.

Proof. Suppose that $_{R}M$ is e-symmetric. Let $a, b \in R, m \in M$ and $u, v, w \in \Delta$ such that $(u^{-1}a)(v^{-1}b)(w^{-1}m) = 0$ in $(\Delta^{-1}R)(\Delta^{-1}M)$. Since Δ is contained in the center of R, we have

$$0 = (u^{-1}v^{-1}w^{-1})(abm) = (uvw)^{-1}(abm),$$

e-symmetric Modules

and so abm = 0. Therefore ebam = 0, since $_RM$ is e-symmetric. So, in $(\Delta^{-1}R)(\Delta^{-1}M)$, we have $0 = (1vuw)^{-1}(ebam) = (1^{-1}v^{-1}u^{-1}w^{-1})(ebam)$. Thus

$$(1^{-1}e)(v^{-1}b)(u^{-1}a)(w^{-1}m) = 0.$$

Hence $_{(\Delta^{-1}R)}(\Delta^{-1}M)$ is $(1^{-1}e)$ -symmetric. It is clear that if $_{(\Delta^{-1}R)}(\Delta^{-1}M)$ is $(1^{-1}e)$ -symmetric, then $_RM$ is e-symmetric.

Corollary 4.2. Let R be a ring and $e \in Id(R)$. Then $_{R[x]}M[x]$ is esymmetric if and only if $_{R[x,x^{-1}]}M[x,x^{-1}]$ is e-symmetric.

Proof. Consider the multiplicatively closed set $\Delta = \{1, x, x^2, x^3, ...\}$ which is clearly a subset of R[x] consisting of regular elements. Since $\Delta^{-1}R[x] =$ $R[x, x^{-1}]$ and $\Delta^{-1}M[x] = M[x, x^{-1}]$, the result follows directly from Theorem 4.1.

Following, Anderson and Camillo [1], extended the concept of Armendariz ring to Armendariz module, as follows: A left R-module $_RM$ is called Armendariz if whenever $m(x) = \sum_{i=0}^{n} m_i x^i \in M[x]$ and $g(x) = \sum_{j=0}^{p} a_j x^j \in R[x]$ such that g(x)m(x) = 0 implies $a_im_i = 0$ for all *i* and *j*. The Armendariz property holds for any finite product of polynomials. Clearly, R is an Armendariz ring if and only if $_{R}R$ is an Armendariz *R*-module.

Theorem 4.3. Let R be a ring, $e \in Id(R)$ and $_RM$ a left Armendariz Rmodule. $_{R}M$ is an e-symmetric module if and only if $_{R[x]}M[x]$ is e-symmetric if and only if $_{R[x,x^{-1}]}M[x,x^{-1}]$ is e-symmetric.

Proof. Assume that $_{R}M$ is e-symmetric. Let $m(x) = \sum_{i=0}^{n} m_{i}x^{i} \in M[x]$ and

 $f(x) = \sum_{j=0}^{p} a_j x^j, g(x) = \sum_{k=0}^{q} b_k x^k \in R[x]$ such that f(x) g(x) m(x) = 0. Since $_{R}M$ is a left Armendariz *R*-module, we have $a_{i}b_{k}m_{i} = 0$ for all i, j and k.

Since $_{R}M$ is *e*-symmetric, we get $eb_{k}a_{j}m_{i} = 0$ for all i, j and k. Thus we have eg(x) f(x) m(x) = 0. Therefore $_{R[x]}M[x]$ is e-symmetric. Now the required equivalence is clear from Corollary 4.2.

5. *e*-reduced modules

In this section we introduce the notion of *e*-reduced modules.

Definition 5.1. A left *R*-module $_RM$ is called *e*-reduced, where $e \in Id(R)$, if whenever $a \in R$ and $m \in M$ such that am = 0 implies $Rm \cap eaM = 0$.

Hanan Abd-Elmalk

Proposition 5.2. The following conditions are equivalent for a left *R*-module $_{R}M$:

(1) $_{R}M$ is an e-reduced module.

(2) The following two conditions hold:

(i) Whenever $a \in R$ and $m \in M$ such that am = 0 implies eaRm = 0,

(ii) Whenever $a \in R$ and $m \in M$ such that $a^2m = 0$ implies eam = 0.

(3) Whenever $a \in R$ and $m \in M$ such that $a^2m = 0$ implies eaRm = 0.

Proof. "(1) \Rightarrow (2)" Let _RM be an *e*-reduced module.

(i) Assume that $a \in R$ and $m \in M$ such that am = 0. From the given, we have $Rm \cap eaM = 0$. It is easily to check that

 $eaRm \subset Rm$ and $eaRm \subset eaM$.

Therefore $eaRm \subset Rm \cap eaM = 0$. Thus eaRm = 0.

(ii) Assume that $a \in R$ and $m \in M$ such that $a^2m = 0$. So, we have

 $0 = e(a^2m) = ea(am); ea \in R \text{ and } am \in M.$

Therefore $R(am)\cap(ea) M = 0$. But $eam \in R(am)\cap(ea) M = 0$. Thus eam = 0. "(2) \Rightarrow (1)" Assume that $a \in R$ and $m \in M$ such that am = 0. We show that $Rm \cap eaM = 0$. Let $x \in Rm \cap eaM$, so there exist $r \in R$ and $n \in M$ such that x = rm and x = ean. Since am = 0, we conclude, from (2-i), that earm = 0. Thus $0 = eax = ea(ean) = (ea)^2 n$. By using (2-ii), we get 0 = ean = x. Therefore $Rm \cap eaM = 0$. Hence $_RM$ is an e-reduced module.

"(2) \Rightarrow (3)" Assume that $a \in R$ and $m \in M$ such that $a^2m = 0$. By using (2-ii), we get 0 = eam. We conclude, from (2-i), that 0 = e(ea) Rm = eaRm. "(3) \Rightarrow (2)" (i) Assume that $a \in R$ and $m \in M$ such that am = 0. Hence $a^2m = 0$ which implies 0 = eaRm.

(ii) Assume that $a \in R$ and $m \in M$ such that $a^2m = 0$. Hence 0 = eaRm. Therefore eam = 0.

A ring R is e-reduced if and only if RR is an e-reduced module. Any reduced left R-module is e-reduced for any nontrivial idempotent e in R.

Lemma 5.3. The class of *e*-reduced modules is closed under submodules, direct products and so direct sums.

Proof. The proof is straightforward depending on the definitions and algebraic structures. \Box

Example 5.4. Consider the ring of integers modulo 12, $R = \mathbb{Z}_{12}$, as a module over itself, then by direct computations, we can conclude that:

$$\operatorname{il}(R) = \{0, 6\} \neq 0 \text{ and } \operatorname{Id}(R) = \{0, 1, 4, 9\}.$$

R is a 4-reduced ring which is not a reduced ring. Therefore $_{R}R$ is a 4-reduced module.

Recall from [4] that, a left *R*-module is called a *p.p.-module* if for any $m \in M$, $\ell_R(m) = gR$ where $g \in Id(R)$.

e-symmetric Modules

Proposition 5.5. Let R be a ring, $_RM$ a left R-module and $e \in Id(R)$. If $_RM$ is a p.p.-module, then $_RM$ is an e-reduced module.

Proof. Assume that $a \in R$ and $m \in M$ such that am = 0. If $x \in Rm \cap eaM$, then x = rm = eak; where $r \in R$, $k \in M$. Since $_RM$ is p.p. and am = 0, we have $ea \in \ell_R(m) = gR$ and so ea = gy with $g \in Id(R), y \in R$. Therefore gea = ea. Then x = eak = geak = gx = grm = 0. Thus $Rm \cap eaM = 0$. Hence $_RM$ is e-reduced.

Proposition 5.6. Let R be a ring and $_RM$ a left R-module. If $e \in S_r(R)$ and $_RM$ is an e-reduced module, then $_RM$ is an e-symmetric module.

Proof. Assume that $a, b \in R$ and $m \in M$ such that abm = 0. So, we have (babb) (ab) m = 0, which implies that $(bab)^2 m = 0$. Since $_RM$ is e-reduced, ebabRm = 0. Since $e \in S_r(R)$, we have ebeaebRm = 0. Then $(ebea)^2 m = 0$. Since $_RM$ is e-reduced and $e \in S_r(R)$, we get ebam = 0. Therefore $_RM$ is e-symmetric.

References

- D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra, 26(7), (1998), 2265–2272.
- [2] N. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra, 185, (2003), 207–223.
- [3] J. Lambek, On the representations of modules by sheaves of factor modules, Canad. Math. Bull. 14(2), (1971), 359–368.
- [4] T. Lee and Y. Zhou, *Reduced modules*, Rings, Modules, Algebras and Abelian Groups, pp.365-377, Lecture Notes in Pure and Appl. Math. 236, Marcel Dekker, New York, 2004.
- [5] F. Meng and J. Wei, e-Symmetric rings, Comm. Contemp. Math., 20, (2018), 1750039.
 [6] R. Rapheael, Some remarks on regular and strongly regular rings, Canad. Math. Bull., 17(5), (1974/75), 709-712.

Hanan Abd-ElmalkDepartment of Mathematics, Faculty of Science,Ain Shams University,P.O. Box 11566, Abbasaya, Cairo, Egypt.E-mail: hanan_abdelmalk@sci.asu.edu.eg