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e-SYMMETRIC MODULES

HANAN ABD-ELMALK

Abstract. In this paper we introduce two classes of modules namely
e-symmetric and e-reduced. Also, we study the characterizations of e-
symmetric and e-reduced modules and their related properties.

1. Introduction

Throughout this paper, R denotes an associative ring with identity, rM
is a unitary left R-module, Id (R) is the set of all idempotent elements of
R, nil (R) is the set of all nilpotent elements of R, C(R) is the center of R,
Si(R) ={e€Id(R): e R e=eR} is the set of all right semicentral idempotent
elements of R, and {r(M) = {a € R : aM = 0} is the left annihilator of M in
R.

According to Lambek [3], aring R is called symmetric if whenever a,b,c € R
such that abc = 0, we have bac = 0. An equivalent condition on a ring R is that
whenever a product of any number of elements is zero, any permutation of the
factors still yields vanishes product. Following [5], for an idempotent e € R, a
ring R is called e-symmetric if whenever a, b, ¢ € R such that abc = 0, we have
acbe = 0. Recall from [3] and [6] that a left R-module M is called symmetric
if whenever a,b € R and m € M such that abm = 0 implies bam = 0.

Recall that a ring R is reduced if it has no nonzero nilpotent elements. In
2004, the reduced ring concept was extended to modules by Lee and Zhou [4]
as follows: a left R-module g M is reduced if, for any m € M and any a € R,
am = 0 implies Rm NaM = 0.

This paper is organized as follows. In Section 2, we first define R M to
be e-symmetric, where e € Id(R), if whenever a,b € R and m € M such
that abm = 0 implies ebam = 0. We discuss many properties of e-symmetric
modules. In Sections 3 and 4, we investigate the behavior of e-symmetric
modules with respect to matrix and polynomial extensions, respectively. In
Section 5, we define g M to be e-reduced, where e € Id(R), if whenever a € R
and m € M such that a?m = 0 implies eaRm = 0. We show that every
e-reduced module is e-symmetric for any right semicentral idempotent e in R.
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2. Modules with e-symmetric condition

In this section, we extend the notion of e-symmetric rings to modules as
follows:

Definition 2.1. A left R-module gM is called e-symmetric, where e €
Id(R), if whenever a,b € R and m € M such that abm = 0 implies ebam = 0.

Obviously, R is a left e-symmetric ring if and only if g R is an e-symmetric
module.

Clearly, any symmetric module is an e-symmetric module for any e € Id(R).
In the following example we show that the class of e-symmetric modules is
properly contains the class of symmetric modules.

Example 2.2. Let S be a symmetric ring, R = < 55 ) and M =

0o S
0o S . . 1 1
A left R-module. Consider the following elements a = 0 1)
10 0 0 . .
b= 0 0 ) € Rand m = 01 )€ M. By direct computations we get

that abm = 0 and bam # 0. So g M is not a symmetric left R-module. Consider

the idempotent e = < 8 (1) > € R, we show that rpM is an e-symmetric left
[Ty _ft u (0 «
R-module. Let a = ( 0 z)’b_ ( 0 v ) € Rand m = ( 0 B ) eM
such that abm = 0. Hence
= zvf, and
= zxta+ zuf + yvp.

Thus
0 O
ebam-(o vzﬂ>_0'

Proposition 2.3. The class of e-symmetric modules is closed under sub-
modules, direct products and so direct sums.

Proof. The proof is straightforward depending on the definitions and alge-
braic structures. O

Recall that a module g M is called cogenerated by R if it is embedded in a
direct product of copies of R, and g M is called faithful if £r(M) = (0). The
following Proposition is a direct result of definitions and Proposition 2.3.

Proposition 2.4. The following conditions are equivalent for a ring R :
(1) R is an e-symmetric ring.
(2) Every cogenerated left R-module, by R, is an e-symmetric module.
(3) Every submodule of a free R-module is an e-symmetric module.
(4) There exists a faithful e-symmetric R-module.
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Proposition 2.5. Let R, S be rings, e € Id(R) and ¢ : R — S be a ring
homomorphism. If ¢M is a left S-module, then M is a left R-module via
rm = p(r)m for all r € R and m € M. Then we get:

(1) If sM is a p(e)-symmetric module, then g M is an e-symmetric module.
(2) If ¢ is onto and g M is an e-symmetric module, then g M is a ¢(e)-symmetric
module.

Proof. (1) Suppose that gM is a ¢(e)-symmetric module. Let a,b € R and
m € M such that abm = 0. Then ¢(ab)m = ¢(a)p(b)m = 0. Since gM is
p(e)-symmetric, we have p(e)p(b)p(a)m = 0. So p(eba)m = 0, which in turn
implies ebam = 0. Hence g M is an e-symmetric module.
(2) Suppose that ¢ is onto and gpM is an e-symmetric module. Let z,y € S
and m € M such that zym = 0. Since ¢ is onto, there exist a,b € R such that
x = p(a) and y = ¢(b). Then p(a)p(b)m = @(ab)m = abm = 0. Since g M is
e-symmetric, implies ebam = 0. Hence p(eba)m = p(e)p(b)p(a)m = 0, and so
p(e)yzm = 0. Thus gM is a p(e)-symmetric module.

Theorem 2.6. Let R be a ring, e € S;(R) and grM is a left R-module.
Then r M is an e-symmetric module if and only if .p M is a symmetric module.

Proof. © =" Assume that rM is an e-symmetric module. Let a,b € eR
and m € M such that abm = 0. Since a,b € eR, there exist z,y € R such
that a = ex and b = ey. So we get (ex) (ey)m = 0 in g M which implies that
e (ey) (ex)m = (ey) (ex) m = bam = 0. Hence g M is a symmetric module.

* <" Assume that .z M is a symmetric module. Let a,b € R and m € M such
that abm = 0 which implies that eabm = 0. Since e € S;(R), we get (eae) bm =
0 and then (ea) (eb)m = 0 in .g M. Hence (eb) (ea) m = (ebe) am = ebam = 0.
Thus rM is an e-symmetric module. O

Corollary 2.7. Let R be a ring, e € C(R) and rM a left R-module. If
erM and (;_oygpM are symmetric modules, then rM is a symmetric module.

Proof. We can easily check that e € C(R) if and only if (1—e) € C(R). From
Theorem 2.6, we conclude that g M is both e-symmetric and (1 —e)-symmetric.
Let a,b € R and m € M such that abm = 0 which implies that ebam = 0 and
(1 —e) bam = 0. Therefore bam = 0. Thus pM is a symmetric module. O

Proposition 2.8. Let R be a ring, e € Id(R) and gk M a left R-module. If
rM is an e-symmetric module, then R = R /{r(M) is an e-symmetric ring.

Proof. Let @,b,¢ € R, such that abé = 0. So abc = 0. Hence abc € {r(M),
and so we have abcm = 0 for every m € M. Since g M is e-symmetric, we get
ebacm = 0 for every m € M. Hence ebac € {r(M) and so 0 = ebac =€ b @ ¢.
Therefore R is an e-symmetric ring. O
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3. Matrix extensions

In this section we characterize left e-symmetric 2-by-2 generalized upper
triangular matrix rings. Moreover, as a corollary we obtain that a ring R is a
left e-symmetric ring if and only if T, (R) is left F-symmetric for all positive
integers n.

R M
0o s
. . e k .o . e k

an (R, S)-bimodule. If T is a left ( 0 g >—symmetr1c ring, with < 0 g ) €
Id(T), then:

(1) R is a left e-symmetric ring,

(2) S is a left g-symmetric ring, and

(3) rRM 1is a left e-symmetric R-module.

Theorem 3.1. Let T = ( ) where R and S are rings, and pMg

k

Proof. Assume that T is a left ( 8 >—symmetric ring, where ( 8 p €

Id(T). Then by easy computations, we can check that e € Id(R), g € 1d(S) and
ek + kg = k.
(1) Assume that abc = 0 for a,b,c € R. Consider the following elements

(65 )(o0)(50)er
=5 )0 0) (i o)

)—symmetric ring, we get

We have

e
0

DI

Hence 0 = ebac in R. Therefore R is a left e-symmetric ring.
(2) Assume that a8~y =0, for «, 8,7 € S. Consider the following elements

(L2138 ) en
(1))

k L
g -symmetric ring, we get

Since T is a left (

We have

Since T is a left

S HEDEDE )

7N
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Hence gB8ay = 0 in S. Therefore S is a left g-symmetric ring.
(3) Let a,b € R and m € M such that abm = 0. Consider the following elements

(65)(o0) (6 5)er
=5 o) (0 0) (6 %)

We have

Since T is a left < 8 K )—symmetric ring, we get
o=( ¢ k b 0 a 0 0 m
N0 g 0 0 0 0 0o 0 /)
Hence ebam = 0 in g M. Therefore pM is a left e-symmetric R-module. O
R M .
Theorem 3.2. Let T = ( 0 S ) where R and S are rings, and pMg

an (R, S)-bimodule. If S is a left g-symmetric ring, where g € 1d(.S), then T is

a left < 8 2 )—symmetric ring.

Proof. Assume that S is a left g-symmetric ring, where g € Id(S). Consider
the following elements

(0w ) (on)(r)er

such that

Thus

aqu aqt + anv + mpv
0= .
0 bpv

Hence 0 = bpv in S. Since S is a left g-symmetric ring, we have gpbv = 0.

N T

Therefore T is a left ( 0

0 L
0 g )-symmetrlc ring. O

Corollary 3.3. Let T,,(R) be the n-by-n upper triangular matrix ring over
a ring R, where n > 1. Then the following are equivalent:
(1) R is a left e-symmetric ring, where e € Id(R).

R R . 0 0 o
(2) To(R) = ( 0 R ) is a left ( 0 e >—symmetr1c ring.
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0 0 0
00 .. O

(3)T,(R)isaleft | . . . .| -symmetric ring for every positive integer
0 0 e

Proof. “(3) = (1)" follows directly from the fact that T} (R) = R.
‘(1) = (2)" is clear from Theorem 3.2.

“(2) = (3)" Note that T}, 41 (R) = ( Ig TA{R) ) where M is the 1-by-n row
matrix with R in every entry and 0 is the n-by-1 column zero matrix. So this
implication is proved by using induction on n. O

4. Polynomial extensions

Recall the following extensions of a left R-module pM :

M [z] = {gp(x):Zmixi:mi EM}.

M [x] is a left R [z]-module and g, M [z] is called the usual polynomial exten-
sion of rM.

n
Mz, z7 1 = {cp(x) = Z mix' i m; € M} .
i=—k

Mz, z7'] is a left R[z,2~']-module and g, ,—M[z,27'] is called the usual
Laurent polynomial extension of rM.

From ([2], Example 2.1.), we conclude that, in general, the polynomial rings
over symmetric rings not be symmetric.

This motivated us to study the conditions under which the polynomial ex-
tensions of a left R-module pM be e-symmetric, for some e € Id(R).

We mean by a regular element of a ring R, a nonzero element which is not
a zero divisor.

Theorem 4.1. Let R be a ring, A be a multiplicatively closed subset of
R consisting of central regular elements, 1 € A and e € Id(R). Then rM is
e-symmetric if and only if (A-1g) (A‘lM) is (1_16) -symmetric.

Proof. Suppose that rM is e-symmetric. Let a,b € R, m € M and
u,v,w € A such that (u_la) (v_lb) (w_lm) = 0in (a-1p) (A_IM). Since
A is contained in the center of R, we have

0= (u "o 'w™") (abm) = (uvw) ™" (abm)
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and so abm = 0. Therefore ebam = 0, since gpM is e-symmetric. So, in
(a-1r) (A7'M), we have 0 = (lvuw) ™" (ebam) = (17 'v ™ w™t) (ebam) .
Thus

(1716) (vilb) (uila) (wilm) =0.

Hence (a-1p) (A7*M) is (17'e)-symmetric.
It is clear that if (A-1p) (A‘lM) is (1_16)—Symmetric, then r M is e-symmetric.
O

Corollary 4.2. Let R be a ring and e € Id(R). Then gy M [z] is e-
symmetric if and only if g, ;- Mz, z~ ] is e-symmetric.

Proof. Consider the multiplicatively closed set A = {1, x, 22, 23, } which
is clearly a subset of R[x] consisting of regular elements. Since A™'R[z] =
R[z,x7'] and A=t M [x] = M[z,271], the result follows directly from Theorem
4.1. O

Following, Anderson and Camillo [1], extended the concept of Armendariz

ring to Armendariz module, as follows: A left R-module g M is called Armen-

n . p .

dariz if whenever m (z) = > m;a* € M [z] and g (z) = ) a;a’ € R[z] such
i=0 §j=0

that g () m (x) = 0 implies a;m; = 0 for all 4 and j. The Armendariz property

holds for any finite product of polynomials. Clearly, R is an Armendariz ring

if and only if gR is an Armendariz R-module.

Theorem 4.3. Let R be a ring, e € Id(R) and gM a left Armendariz R-
module. rM is an e-symmetric module if and only if i, M [z] is e-symmetric
if and only if R[1)$—1]M[x,1'71] is e-symmetric.

Proof. Assume that g M is e-symmetric. Let m (z) = > m;x* € M [x] and
i=0
P , q
f (@)= > a2’ g(x) = Y bra® € R[x] such that f(z)g(z)m (z) = 0. Since
i=0 k=0

rM is a left Armendariz R-module, we have a;bym; = 0 for all 7,5 and k.
Since rM is e-symmetric, we get ebia;m; = 0 for all 4, j and k. Thus we have
eg (z) f (x)m (z) = 0. Therefore gy, M [z] is e-symmetric. Now the required
equivalence is clear from Corollary 4.2. O

5. e-reduced modules

In this section we introduce the notion of e-reduced modules.

Definition 5.1. A left R-module pM is called e-reduced, where e € Id(R),
if whenever a € R and m € M such that am = 0 implies Rm NeaM = 0.
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Proposition 5.2. The following conditions are equivalent for a left R-
module gr M :
(1) RM is an e-reduced module.
(2) The following two conditions hold:
(i) Whenever a € R and m € M such that am = 0 implies eaRm = 0,
(ii) Whenever a € R and m € M such that a*m = 0 implies eam = 0.
(3) Whenever a € R and m € M such that a®*m = 0 implies eaRm = 0.

Proof. “(1) = (2)" Let g M be an e-reduced module.
(1) Assume that a € R and m € M such that am = 0. From the given, we have
RmnNeaM = 0. It is easily to check that

eaRm C Rm and eaRm C ealMl.

Therefore eaRm C Rm NeaM = 0. Thus eaRm = 0.
(ii) Assume that a € R and m € M such that a?m = 0. So, we have

0= e (a’m) =ea(am); ea € R and am € M.

Therefore R (am)N(ea) M = 0. But eam € R (am)N(ea) M = 0. Thus eamn = 0.
“(2) = (1)" Assume that a € R and m € M such that am = 0. We show that
RmnNeaM = 0. Let x € RmNeabl, so there exist » € R and n € M such that
x = rm and z = ean. Since am = 0, we conclude, from (2-i), that earm = 0.
Thus 0 = eax = ea(ean) = (ea)2 n. By using (2-ii), we get 0 = ean = .
Therefore Rm N eaM = 0. Hence g M is an e-reduced module.

“(2) = (3)" Assume that a € R and m € M such that a’>m = 0. By using
(2-ii), we get 0 = eam. We conclude, from (2-i), that 0 = e (ea) Rm = eaRm.
“(3) = (2)" (i) Assume that @ € R and m € M such that am = 0. Hence
a’m = 0 which implies 0 = eaRm.

(ii) Assume that @ € R and m € M such that a?m = 0. Hence 0 = eaRm.
Therefore eam = 0. O

A ring R is e-reduced if and only if R is an e-reduced module. Any reduced
left R-module is e-reduced for any nontrivial idempotent e in R.

Lemma 5.3. The class of e-reduced modules is closed under submodules,
direct products and so direct sums.

Proof. The proof is straightforward depending on the definitions and alge-
braic structures. O

Example 5.4. Consider the ring of integers modulo 12, R = Zi2, as a
module over itself, then by direct computations, we can conclude that:

nil(R) = {0,6} # 0 and Id(R) = {0,1,4,9} .

R is a 4-reduced ring which is not a reduced ring. Therefore rR is a 4-reduced
module.

Recall from [4] that, a left R-module is called a p.p.-module if for any m € M,
lr(m) = gR where g € Id(R).
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Proposition 5.5. Let R be a ring, gM a left R-module and e € Id(R). If
rM is a p.p.-module, then g M is an e-reduced module.

Proof. Assume that a € R and m € M such that am = 0. If z € RmnNeal,
then £ = rm = eak; where r € R, k € M. Since gM is p.p. and am = 0,
we have ea € €r(m) = gR and so ea = gy with g € Id(R),y € R. Therefore
gea = ea. Then x = eak = geak = gx = grm = 0. Thus RmNeaM = 0. Hence
rM is e-reduced. O

Proposition 5.6. Let R be a ring and gM a left R-module. If e € S;(R)
and g M is an e-reduced module, then g M is an e-symmetric module.

Proof. Assume that a,b € R and m € M such that abm = 0. So, we have
(babb) (ab)m = 0, which implies that (bab)*>m = 0. Since rpM is e-reduced,
ebabRm = 0. Since e € S,(R), we have ebeaebRm = 0. Then (ebea)”m = 0.
Since gM is e-reduced and e € S,(R), we get ebam = 0. Therefore gM is
e-symmetric. O
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