e-SYMMETRIC MODULES

Hanan Abd-Elmalk

Abstract

In this paper we introduce two classes of modules namely e-symmetric and e-reduced. Also, we study the characterizations of e symmetric and e-reduced modules and their related properties.

1. Introduction

Throughout this paper, R denotes an associative ring with identity, ${ }_{R} M$ is a unitary left R-module, $\operatorname{Id}(R)$ is the set of all idempotent elements of R, $\operatorname{nil}(R)$ is the set of all nilpotent elements of $R, \mathrm{C}(R)$ is the center of R, $\mathrm{S}_{\mathrm{r}}(R)=\{e \in \operatorname{Id}(R): e R e=e R\}$ is the set of all right semicentral idempotent elements of R, and $\ell_{R}(M)=\{a \in R: a M=0\}$ is the left annihilator of M in R.

According to Lambek [3], a ring R is called symmetric if whenever $a, b, c \in R$ such that $a b c=0$, we have $b a c=0$. An equivalent condition on a ring R is that whenever a product of any number of elements is zero, any permutation of the factors still yields vanishes product. Following [5], for an idempotent $e \in R$, a ring R is called e-symmetric if whenever $a, b, c \in R$ such that $a b c=0$, we have acbe $=0$. Recall from [3] and [6] that a left R-module ${ }_{R} M$ is called symmetric if whenever $a, b \in R$ and $m \in M$ such that $a b m=0$ implies $b a m=0$.

Recall that a ring R is reduced if it has no nonzero nilpotent elements. In 2004, the reduced ring concept was extended to modules by Lee and Zhou [4] as follows: a left R-module ${ }_{R} M$ is reduced if, for any $m \in M$ and any $a \in R$, $a m=0$ implies $R m \cap a M=0$.

This paper is organized as follows. In Section 2, we first define ${ }_{R} M$ to be e-symmetric, where $e \in \operatorname{Id}(R)$, if whenever $a, b \in R$ and $m \in M$ such that $a b m=0$ implies $e b a m=0$. We discuss many properties of e-symmetric modules. In Sections 3 and 4, we investigate the behavior of e-symmetric modules with respect to matrix and polynomial extensions, respectively. In Section 5, we define ${ }_{R} M$ to be e-reduced, where $e \in \operatorname{Id}(R)$, if whenever $a \in R$ and $m \in M$ such that $a^{2} m=0$ implies $e a R m=0$. We show that every e-reduced module is e-symmetric for any right semicentral idempotent e in R.

[^0]
2. Modules with e-symmetric condition

In this section, we extend the notion of e-symmetric rings to modules as follows:

Definition 2.1. A left R-module ${ }_{R} M$ is called e-symmetric, where $e \in$ $\operatorname{Id}(R)$, if whenever $a, b \in R$ and $m \in M$ such that $a b m=0$ implies ebam $=0$.

Obviously, R is a left e-symmetric ring if and only if ${ }_{R} R$ is an e-symmetric module.

Clearly, any symmetric module is an e-symmetric module for any $e \in \operatorname{Id}(R)$. In the following example we show that the class of e-symmetric modules is properly contains the class of symmetric modules.

Example 2.2. Let S be a symmetric ring, $R=\left(\begin{array}{cc}S & S \\ 0 & S\end{array}\right)$ and $M=$ $\left(\begin{array}{cc}0 & S \\ 0 & S\end{array}\right)$ a left R-module. Consider the following elements $a=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, $b=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in R$ and $m=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \in M$. By direct computations we get that $a b m=0$ and $b a m \neq 0$. So ${ }_{R} M$ is not a symmetric left R-module. Consider the idempotent $e=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \in R$, we show that ${ }_{R} M$ is an e-symmetric left R-module. Let $a=\left(\begin{array}{cc}x & y \\ 0 & z\end{array}\right), b=\left(\begin{array}{cc}t & u \\ 0 & v\end{array}\right) \in R$ and $m=\left(\begin{array}{cc}0 & \alpha \\ 0 & \beta\end{array}\right) \in M$ such that abm $=0$. Hence

$$
\begin{aligned}
& 0=z v \beta, \text { and } \\
& 0=x t \alpha+x u \beta+y v \beta .
\end{aligned}
$$

Thus

$$
\text { ebam }=\left(\begin{array}{cc}
0 & 0 \\
0 & v z \beta
\end{array}\right)=0 .
$$

Proposition 2.3. The class of e-symmetric modules is closed under submodules, direct products and so direct sums.

Proof. The proof is straightforward depending on the definitions and algebraic structures.

Recall that a module ${ }_{R} M$ is called cogenerated by R if it is embedded in a direct product of copies of R, and ${ }_{R} M$ is called faithful if $\ell_{R}(M)=(0)$. The following Proposition is a direct result of definitions and Proposition 2.3.

Proposition 2.4. The following conditions are equivalent for a ring R :
(1) R is an e-symmetric ring.
(2) Every cogenerated left R-module, by R, is an e-symmetric module.
(3) Every submodule of a free R-module is an e-symmetric module.
(4) There exists a faithful e-symmetric R-module.

Proposition 2.5. Let R, S be rings, $e \in \operatorname{Id}(R)$ and $\varphi: R \rightarrow S$ be a ring homomorphism. If ${ }_{S} M$ is a left S-module, then M is a left R-module via $r m=\varphi(r) m$ for all $r \in R$ and $m \in M$. Then we get:
(1) If ${ }_{S} M$ is a $\varphi(e)$-symmetric module, then ${ }_{R} M$ is an e-symmetric module.
(2) If φ is onto and ${ }_{R} M$ is an e-symmetric module, then ${ }_{S} M$ is a $\varphi(e)$-symmetric module.

Proof. (1) Suppose that ${ }_{S} M$ is a $\varphi(e)$-symmetric module. Let $a, b \in R$ and $m \in M$ such that $a b m=0$. Then $\varphi(a b) m=\varphi(a) \varphi(b) m=0$. Since ${ }_{S} M$ is $\varphi(e)$-symmetric, we have $\varphi(e) \varphi(b) \varphi(a) m=0$. So $\varphi(e b a) m=0$, which in turn implies $e b a m=0$. Hence ${ }_{R} M$ is an e-symmetric module.
(2) Suppose that φ is onto and ${ }_{R} M$ is an e-symmetric module. Let $x, y \in S$ and $m \in M$ such that $x y m=0$. Since φ is onto, there exist $a, b \in R$ such that $x=\varphi(a)$ and $y=\varphi(b)$. Then $\varphi(a) \varphi(b) m=\varphi(a b) m=a b m=0$. Since ${ }_{R} M$ is e-symmetric, implies $e b a m=0$. Hence $\varphi(e b a) m=\varphi(e) \varphi(b) \varphi(a) m=0$, and so $\varphi(e) y x m=0$. Thus ${ }_{S} M$ is a $\varphi(e)$-symmetric module.

Theorem 2.6. Let R be a ring, $e \in \mathrm{~S}_{\mathrm{r}}(R)$ and ${ }_{R} M$ is a left R-module. Then ${ }_{R} M$ is an e-symmetric module if and only if $e_{e R} M$ is a symmetric module.

Proof. " $\Longrightarrow "$ Assume that ${ }_{R} M$ is an e-symmetric module. Let $a, b \in e R$ and $m \in M$ such that $a b m=0$. Since $a, b \in e R$, there exist $x, y \in R$ such that $a=e x$ and $b=e y$. So we get $(e x)(e y) m=0$ in ${ }_{R} M$ which implies that $e(e y)(e x) m=(e y)(e x) m=b a m=0$. Hence $e_{R} M$ is a symmetric module. $" \Longleftarrow "$ Assume that ${ }_{e R} M$ is a symmetric module. Let $a, b \in R$ and $m \in M$ such that $a b m=0$ which implies that $e a b m=0$. Since $e \in \mathrm{~S}_{\mathrm{r}}(R)$, we get $(e a e) b m=$ 0 and then $(e a)(e b) m=0$ in ${ }_{e R} M$. Hence $(e b)(e a) m=(e b e) a m=e b a m=0$. Thus ${ }_{R} M$ is an e-symmetric module.

Corollary 2.7. Let R be a ring, $e \in \mathrm{C}(R)$ and ${ }_{R} M$ a left R-module. If ${ }_{e R} M$ and ${ }_{(1-e) R} M$ are symmetric modules, then ${ }_{R} M$ is a symmetric module.

Proof. We can easily check that $e \in \mathrm{C}(R)$ if and only if $(1-e) \in \mathrm{C}(R)$. From Theorem 2.6, we conclude that ${ }_{R} M$ is both e-symmetric and ($1-e$)-symmetric. Let $a, b \in R$ and $m \in M$ such that $a b m=0$ which implies that $e b a m=0$ and $(1-e) b a m=0$. Therefore bam $=0$. Thus ${ }_{R} M$ is a symmetric module.

Proposition 2.8. Let R be a ring, $e \in \operatorname{Id}(R)$ and ${ }_{R} M$ a left R-module. If ${ }_{R} M$ is an e-symmetric module, then $\bar{R}=R / \ell_{R}(M)$ is an \bar{e}-symmetric ring.

Proof. Let $\bar{a}, \bar{b}, \bar{c} \in \bar{R}$, such that $\bar{a} \bar{b} \bar{c}=\overline{0}$. So $\overline{a b c}=\overline{0}$. Hence $a b c \in \ell_{R}(M)$, and so we have $a b c m=0$ for every $m \in M$. Since ${ }_{R} M$ is e-symmetric, we get $e b a c m=0$ for every $m \in M$. Hence $e b a c \in \ell_{R}(M)$ and so $\overline{0}=\overline{e b a c}=\bar{e} \bar{b} \bar{a} \bar{c}$. Therefore \bar{R} is an \bar{e}-symmetric ring.

3. Matrix extensions

In this section we characterize left e-symmetric 2-by-2 generalized upper triangular matrix rings. Moreover, as a corollary we obtain that a ring R is a left e-symmetric ring if and only if $T_{n}(R)$ is left E-symmetric for all positive integers n.

Theorem 3.1. Let $T=\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$ where R and S are rings, and ${ }_{R} M_{S}$ an (R, S)-bimodule. If T is a left $\left(\begin{array}{cc}e & k \\ 0 & g\end{array}\right)$-symmetric ring, with $\left(\begin{array}{cc}e & k \\ 0 & g\end{array}\right) \in$ $\operatorname{Id}(T)$, then:
(1) R is a left e-symmetric ring,
(2) S is a left g-symmetric ring, and
(3) ${ }_{R} M$ is a left e-symmetric R-module.

Proof. Assume that T is a left $\left(\begin{array}{cc}e & k \\ 0 & g\end{array}\right)$-symmetric ring, where $\left(\begin{array}{cc}e & k \\ 0 & g\end{array}\right) \in$ $\operatorname{Id}(T)$. Then by easy computations, we can check that $e \in \operatorname{Id}(R), g \in \operatorname{Id}(S)$ and $e k+k g=k$.
(1) Assume that $a b c=0$ for $a, b, c \in R$. Consider the following elements

$$
\left(\begin{array}{cc}
a & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
b & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
c & 0 \\
0 & 0
\end{array}\right) \in T
$$

We have

$$
0=\left(\begin{array}{cc}
a & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
b & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
c & 0 \\
0 & 0
\end{array}\right)
$$

Since T is a left $\left(\begin{array}{cc}e & k \\ 0 & g\end{array}\right)$-symmetric ring, we get

$$
0=\left(\begin{array}{cc}
e & k \\
0 & g
\end{array}\right)\left(\begin{array}{cc}
b & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
c & 0 \\
0 & 0
\end{array}\right)
$$

Hence $0=e b a c$ in R. Therefore R is a left e-symmetric ring.
(2) Assume that $\alpha \beta \gamma=0$, for $\alpha, \beta, \gamma \in S$. Consider the following elements

$$
\left(\begin{array}{cc}
0 & 0 \\
0 & \alpha
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
0 & \beta
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & \gamma
\end{array}\right) \in T .
$$

We have

$$
0=\left(\begin{array}{cc}
0 & 0 \\
0 & \alpha
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & \beta
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & \gamma
\end{array}\right) .
$$

Since T is a left $\left(\begin{array}{cc}e & k \\ 0 & g\end{array}\right)$-symmetric ring, we get

$$
0=\left(\begin{array}{ll}
e & k \\
0 & g
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & \beta
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & \alpha
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & \gamma
\end{array}\right)
$$

Hence $g \beta \alpha \gamma=0$ in S. Therefore S is a left g-symmetric ring.
(3) Let $a, b \in R$ and $m \in M$ such that $a b m=0$. Consider the following elements

$$
\left(\begin{array}{cc}
a & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
b & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right) \in T .
$$

We have

$$
0=\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
b & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right)
$$

Since T is a left $\left(\begin{array}{cc}e & k \\ 0 & g\end{array}\right)$-symmetric ring, we get

$$
0=\left(\begin{array}{ll}
e & k \\
0 & g
\end{array}\right)\left(\begin{array}{ll}
b & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right)
$$

Hence ebam $=0$ in ${ }_{R} M$. Therefore ${ }_{R} M$ is a left e-symmetric R-module.
Theorem 3.2. Let $T=\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$ where R and S are rings, and ${ }_{R} M_{S}$ an (R, S)-bimodule. If S is a left g-symmetric ring, where $g \in \operatorname{Id}(S)$, then T is a left $\left(\begin{array}{cc}0 & 0 \\ 0 & g\end{array}\right)$-symmetric ring.

Proof. Assume that S is a left g-symmetric ring, where $g \in \operatorname{Id}(S)$. Consider the following elements

$$
\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right),\left(\begin{array}{cc}
q & n \\
0 & p
\end{array}\right),\left(\begin{array}{cc}
u & t \\
0 & v
\end{array}\right) \in T
$$

such that

$$
0=\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
q & n \\
0 & p
\end{array}\right)\left(\begin{array}{cc}
u & t \\
0 & v
\end{array}\right)
$$

Thus

$$
0=\left(\begin{array}{cc}
a q u & a q t+a n v+m p v \\
0 & b p v
\end{array}\right)
$$

Hence $0=b p v$ in S. Since S is a left g-symmetric ring, we have $g p b v=0$.
Thus

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & g
\end{array}\right)\left(\begin{array}{ll}
q & n \\
0 & p
\end{array}\right)\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
u & t \\
0 & v
\end{array}\right)=0
$$

Therefore T is a left $\left(\begin{array}{cc}0 & 0 \\ 0 & g\end{array}\right)$-symmetric ring.
Corollary 3.3. Let $T_{n}(R)$ be the n-by- n upper triangular matrix ring over a ring R, where $n \geq 1$. Then the following are equivalent:
(1) R is a left e-symmetric ring, where $e \in \operatorname{Id}(R)$.
(2) $T_{2}(R)=\left(\begin{array}{cc}R & R \\ 0 & R\end{array}\right)$ is a left $\left(\begin{array}{ll}0 & 0 \\ 0 & e\end{array}\right)$-symmetric ring.
(3) $T_{n}(R)$ is a left $\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & e\end{array}\right)$-symmetric ring for every positive integer n.

Proof. " $(3) \Longrightarrow(1)$ " follows directly from the fact that $T_{1}(R) \cong R$.
" $(1) \Longrightarrow(2)$ " is clear from Theorem 3.2.
" $(2) \Longrightarrow(3)$ " Note that $T_{n+1}(R) \cong\left(\begin{array}{cc}R & M \\ 0 & T_{n}(R)\end{array}\right)$ where M is the 1-by- n row matrix with R in every entry and 0 is the n-by- 1 column zero matrix. So this implication is proved by using induction on n.

4. Polynomial extensions

Recall the following extensions of a left R-module ${ }_{R} M$:

$$
M[x]=\left\{\varphi(x)=\sum_{i=0}^{n} m_{i} x^{i}: m_{i} \in M\right\}
$$

$M[x]$ is a left $R[x]$-module and ${ }_{R[x]} M[x]$ is called the usual polynomial extension of ${ }_{R} M$.

$$
M\left[x, x^{-1}\right]=\left\{\varphi(x)=\sum_{i=-k}^{n} m_{i} x^{i}: m_{i} \in M\right\} .
$$

$M\left[x, x^{-1}\right]$ is a left $R\left[x, x^{-1}\right]$-module and ${ }_{R\left[x, x^{-1}\right]} M\left[x, x^{-1}\right]$ is called the usual Laurent polynomial extension of ${ }_{R} M$.

From ([2], Example 2.1.), we conclude that, in general, the polynomial rings over symmetric rings not be symmetric.

This motivated us to study the conditions under which the polynomial extensions of a left R-module ${ }_{R} M$ be e-symmetric, for some $e \in \operatorname{Id}(R)$.

We mean by a regular element of a ring R, a nonzero element which is not a zero divisor.

Theorem 4.1. Let R be a ring, Δ be a multiplicatively closed subset of R consisting of central regular elements, $1 \in \Delta$ and $e \in \operatorname{Id}(R)$. Then ${ }_{R} M$ is e-symmetric if and only if $\left(\Delta^{-1} R\right)\left(\Delta^{-1} M\right)$ is $\left(1^{-1} e\right)$-symmetric.

Proof. Suppose that ${ }_{R} M$ is e-symmetric. Let $a, b \in R, m \in M$ and $u, v, w \in \Delta$ such that $\left(u^{-1} a\right)\left(v^{-1} b\right)\left(w^{-1} m\right)=0$ in ${ }_{\left(\Delta^{-1} R\right)}\left(\Delta^{-1} M\right)$. Since Δ is contained in the center of R, we have

$$
0=\left(u^{-1} v^{-1} w^{-1}\right)(a b m)=(u v w)^{-1}(a b m),
$$

and so $a b m=0$. Therefore ebam $=0$, since ${ }_{R} M$ is e-symmetric. So, in $\left(\Delta^{-1} R\right)\left(\Delta^{-1} M\right)$, we have $0=(1 v u w)^{-1}(e b a m)=\left(1^{-1} v^{-1} u^{-1} w^{-1}\right)(e b a m)$. Thus

$$
\left(1^{-1} e\right)\left(v^{-1} b\right)\left(u^{-1} a\right)\left(w^{-1} m\right)=0
$$

Hence ${ }_{\left(\Delta^{-1} R\right)}\left(\Delta^{-1} M\right)$ is $\left(1^{-1} e\right)$-symmetric.
It is clear that if ${ }_{\left(\Delta^{-1} R\right)}\left(\Delta^{-1} M\right)$ is $\left(1^{-1} e\right)$-symmetric, then ${ }_{R} M$ is e-symmetric.

Corollary 4.2. Let R be a ring and $e \in \operatorname{Id}(R)$. Then ${ }_{R[x]} M[x]$ is $e-$ symmetric if and only if ${ }_{R\left[x, x^{-1}\right]} M\left[x, x^{-1}\right]$ is e-symmetric.

Proof. Consider the multiplicatively closed set $\Delta=\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ which is clearly a subset of $R[x]$ consisting of regular elements. Since $\Delta^{-1} R[x]=$ $R\left[x, x^{-1}\right]$ and $\Delta^{-1} M[x]=M\left[x, x^{-1}\right]$, the result follows directly from Theorem 4.1.

Following, Anderson and Camillo [1], extended the concept of Armendariz ring to Armendariz module, as follows: A left R-module ${ }_{R} M$ is called Armendariz if whenever $m(x)=\sum_{i=0}^{n} m_{i} x^{i} \in M[x]$ and $g(x)=\sum_{j=0}^{p} a_{j} x^{j} \in R[x]$ such that $g(x) m(x)=0$ implies $a_{j} m_{i}=0$ for all i and j. The Armendariz property holds for any finite product of polynomials. Clearly, R is an Armendariz ring if and only if ${ }_{R} R$ is an Armendariz R-module.

Theorem 4.3. Let R be a ring, $e \in \operatorname{Id}(R)$ and ${ }_{R} M$ a left Armendariz R module. ${ }_{R} M$ is an e-symmetric module if and only if ${ }_{R[x]} M[x]$ is e-symmetric if and only if ${ }_{R\left[x, x^{-1}\right]} M\left[x, x^{-1}\right]$ is e-symmetric.

Proof. Assume that ${ }_{R} M$ is e-symmetric. Let $m(x)=\sum_{i=0}^{n} m_{i} x^{i} \in M[x]$ and $f(x)=\sum_{j=0}^{p} a_{j} x^{j}, g(x)=\sum_{k=0}^{q} b_{k} x^{k} \in R[x]$ such that $f(x) g(x) m(x)=0$. Since ${ }_{R} M$ is a left Armendariz R-module, we have $a_{j} b_{k} m_{i}=0$ for all i, j and k. Since ${ }_{R} M$ is e-symmetric, we get $e b_{k} a_{j} m_{i}=0$ for all i, j and k. Thus we have $e g(x) f(x) m(x)=0$. Therefore ${ }_{R[x]} M[x]$ is e-symmetric. Now the required equivalence is clear from Corollary 4.2.

5. e-reduced modules

In this section we introduce the notion of e-reduced modules.
Definition 5.1. A left R-module ${ }_{R} M$ is called e-reduced, where $e \in \operatorname{Id}(R)$, if whenever $a \in R$ and $m \in M$ such that $a m=0$ implies $R m \cap e a M=0$.

Proposition 5.2. The following conditions are equivalent for a left R module ${ }_{R} M$:
(1) ${ }_{R} M$ is an e-reduced module.
(2) The following two conditions hold:
(i) Whenever $a \in R$ and $m \in M$ such that $a m=0$ implies $e a R m=0$,
(ii) Whenever $a \in R$ and $m \in M$ such that $a^{2} m=0$ implies eam $=0$.
(3) Whenever $a \in R$ and $m \in M$ such that $a^{2} m=0$ implies eaRm $=0$.

Proof. " $(1) \Rightarrow(2)$ " Let ${ }_{R} M$ be an e-reduced module.
(i) Assume that $a \in R$ and $m \in M$ such that $a m=0$. From the given, we have $R m \cap e a M=0$. It is easily to check that

$$
e a R m \subset R m \text { and } e a R m \subset e a M
$$

Therefore $e a R m \subset R m \cap e a M=0$. Thus $e a R m=0$.
(ii) Assume that $a \in R$ and $m \in M$ such that $a^{2} m=0$. So, we have

$$
0=e\left(a^{2} m\right)=e a(a m) ; e a \in R \text { and } a m \in M
$$

Therefore $R(a m) \cap(e a) M=0$. But $e a m \in R(a m) \cap(e a) M=0$. Thus $e a m=0$. "(2) $\Rightarrow(1)$ " Assume that $a \in R$ and $m \in M$ such that $a m=0$. We show that $R m \cap e a M=0$. Let $x \in R m \cap e a M$, so there exist $r \in R$ and $n \in M$ such that $x=r m$ and $x=e a n$. Since $a m=0$, we conclude, from (2-i), that earm $=0$. Thus $0=e a x=e a(e a n)=(e a)^{2} n$. By using (2-ii), we get $0=e a n=x$. Therefore $R m \cap e a M=0$. Hence ${ }_{R} M$ is an e-reduced module.
" $(2) \Rightarrow(3)$ " Assume that $a \in R$ and $m \in M$ such that $a^{2} m=0$. By using (2-ii), we get $0=e a m$. We conclude, from (2-i), that $0=e(e a) R m=e a R m$.
" 3) $\Rightarrow(2)$ " (i) Assume that $a \in R$ and $m \in M$ such that $a m=0$. Hence $a^{2} m=0$ which implies $0=e a R m$.
(ii) Assume that $a \in R$ and $m \in M$ such that $a^{2} m=0$. Hence $0=e a R m$. Therefore $e a m=0$.

A ring R is e-reduced if and only if ${ }_{R} R$ is an e-reduced module. Any reduced left R-module is e-reduced for any nontrivial idempotent e in R.

Lemma 5.3. The class of e-reduced modules is closed under submodules, direct products and so direct sums.

Proof. The proof is straightforward depending on the definitions and algebraic structures.

Example 5.4. Consider the ring of integers modulo $12, R=\mathbb{Z}_{12}$, as a module over itself, then by direct computations, we can conclude that:

$$
\operatorname{nil}(R)=\{0,6\} \neq 0 \text { and } \operatorname{Id}(R)=\{0,1,4,9\}
$$

R is a 4-reduced ring which is not a reduced ring. Therefore ${ }_{R} R$ is a 4-reduced module.

Recall from [4] that, a left R-module is called a $p . p$.-module if for any $m \in M$, $\ell_{R}(m)=g R$ where $g \in \operatorname{Id}(R)$.

Proposition 5.5. Let R be a ring, ${ }_{R} M$ a left R-module and $e \in \operatorname{Id}(R)$. If ${ }_{R} M$ is a p.p.-module, then ${ }_{R} M$ is an e-reduced module.

Proof. Assume that $a \in R$ and $m \in M$ such that $a m=0$. If $x \in R m \cap e a M$, then $x=r m=e a k$; where $r \in R, k \in M$. Since ${ }_{R} M$ is p.p. and $a m=0$, we have $e a \in \ell_{R}(m)=g R$ and so $e a=g y$ with $g \in \operatorname{Id}(R), y \in R$. Therefore $g e a=e a$. Then $x=e a k=g e a k=g x=g r m=0$. Thus $R m \cap e a M=0$. Hence ${ }_{R} M$ is e-reduced.

Proposition 5.6. Let R be a ring and ${ }_{R} M$ a left R-module. If $e \in \mathrm{~S}_{\mathrm{r}}(R)$ and ${ }_{R} M$ is an e-reduced module, then ${ }_{R} M$ is an e-symmetric module.

Proof. Assume that $a, b \in R$ and $m \in M$ such that $a b m=0$. So, we have $(b a b b)(a b) m=0$, which implies that $(b a b)^{2} m=0$. Since ${ }_{R} M$ is e-reduced, $e b a b R m=0$. Since $e \in \mathrm{~S}_{\mathrm{r}}(R)$, we have ebeaebRm $=0$. Then $(e b e a)^{2} m=0$. Since ${ }_{R} M$ is e-reduced and $e \in \mathrm{~S}_{\mathrm{r}}(R)$, we get ebam $=0$. Therefore ${ }_{R} M$ is e-symmetric.

References

[1] D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra, 26(7), (1998), 2265-2272.
[2] N. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra, 185, (2003), 207-223.
[3] J. Lambek, On the representations of modules by sheaves of factor modules, Canad. Math. Bull. 14(2), (1971), 359-368.
[4] T. Lee and Y. Zhou, Reduced modules, Rings, Modules, Algebras and Abelian Groups, pp.365-377, Lecture Notes in Pure and Appl. Math. 236, Marcel Dekker, New York, 2004.
[5] F. Meng and J. Wei, e-Symmetric rings, Comm. Contemp. Math., 20, (2018), 1750039.
[6] R. Rapheael, Some remarks on regular and strongly regular rings, Canad. Math. Bull., 17(5), (1974/75), 709-712.

Hanan Abd-Elmalk
Department of Mathematics, Faculty of Science,
Ain Shams University,
P.O. Box 11566, Abbasaya, Cairo, Egypt.

E-mail: hanan_abdelmalk@sci.asu.edu.eg

[^0]: Received November 21, 2020. Revised January 5, 2021. Accepted January 12, 2021.
 2020 Mathematics Subject Classification. 06F05, 16W60, 16D25, 16P60.
 Key words and phrases. reduced ring, symmetric ring, e-reduced ring, e-symmetric ring.

